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Centro Cient́ıfico-Tecnológico de Valparáıso;
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Abstract

Shadowing is a quantum phenomenon leading to a non-additivity of electroweak cross sections
on nucleons bound in a nucleus. It occurs due to destructive interference of amplitudes on different
nucleons. Although the current experimental evidence for shadowing is dominated by charged-
lepton nucleus scattering, studies of neutrino nucleus scattering have recently begun and revealed
unexpected results.
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Part I

Theory of Nuclear Shadowing

1 Introduction

The term shadowing was naturally incorporated into quantum mechanics as a tag for one of the basic
quantum phenomena related to the destructive interference between elastic amplitudes on different
scattering centers. The popular observable sensitive to shadowing in a process, is the normalized ratio
of the cross sections of this process on nuclear and nucleon targets,

RA/N =
σA
AσN

. (1)

Shadowing manifests itself in a suppressed value of this ratio, RA/N < 1, i.e. the nuclear cross section is
less than the sum of the cross sections on all bound nucleons1. Intuitively, the source of the suppression
is the survival probability for the projectile particle or its fluctuations to pass through the nuclear
medium and reach a bound nucleon deep inside the nucleus. In other words, the interaction with a
given bound nucleon is shaded by the probability of having preceding interactions with other nucleons.
This is easy to see on the example of the total hadron-nucleus interaction cross section. It is clear that
a strongly interacting particle has no chance to pass through a heavy nucleus without interaction. This
means that the partial elastic amplitude at impact parameter less than the nuclear radius, b < RA,
nearly saturates unitarity bound, Im fhAel (b) 6 1, i.e. the σhAtot ≈ 2πR2

A, or RA/N ∝ A−1/3, because the
nuclear radius RA ∝ A1/3. In the following sections we calculate these quantities more accurately within
the Glauber-Gribov approach.

1Hereafter we neglect the isospin corrections, i.e. do not make difference between target protons and neutrons, unless
specified. We also neglect the effect of binding, unless it is important.
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Notice that in exclusive reactions one should discriminate between shadowing and final state ab-
sorption. Both effects lead to a suppression of the ratio (1), but have quite different origins.

2 Shadowing in soft interactions

2.1 Shadowing in the Glauber model

The Glauber model [1] was the first theoretical approach that correctly calculated the effects of shad-
owing in hadron-nucleus interactions. The probability for a hadron to interact with the nucleus is one
minus the probability of no interaction with any of the bound nucleons. So the hA elastic amplitude
at impact parameter b has the eikonal form,

ΓhA(~b; {~sj, zj}) = 1−
A∏
k=1

[
1− ΓhN(~b− ~sk)

]
, (2)

where {~sj, zj} denote the coordinates of the target nucleon Nj. iΓ
hN is the elastic scattering amplitude

on a nucleon normalized as,

σhNtot = 2

∫
d2b Re ΓhN(b);

σhNel =

∫
d2b |ΓhN(b)|2 . (3)

In the approximation of single particle nuclear density one can calculate a matrix element between
the nuclear ground states.

〈
0
∣∣∣ΓhA(~b; {~sj, zj})

∣∣∣0〉 = 1−

1− 1

A

∫
d2sΓhN(s)

∞∫
−∞

dz ρA(~b− ~s, z)

A , (4)

where

ρA(~b1, z1) =

∫ A∏
i=2

d3ri |ΨA({~rj})|2 , (5)

is the nuclear single particle density.
The magnitude of shadowing depends on the process. Here we calculate the shadowing effects within

the Glauber model for several basic processes.

Total cross section.
The result Eq. (4) is related via unitarity to the total hA cross section,

σhAtot = 2 Re

∫
d2b

{
1−

[
1− 1

A

∫
d2sΓhN(s)TA(~b− ~s)

]A}

≈ 2

∫
d2b

{
1− exp

[
−1

2
σhNtot (1− iρpp)T hA(b)

]}
, (6)

where ρpp is the ratio of the real to imaginary parts of the forward pp elastic amplitude;

T hA(b) =
2

σhNtot

∫
d2s Re ΓhN(s)TA(~b− ~s) ; (7)
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and

TA(b) =

∫ ∞
−∞

dz ρA(b, z) , (8)

is the nuclear thickness function. We use exponential form of ΓhN(s) throughout the paper,

Re ΓhN(s) =
σhNtot

4πBhN

exp

(
−s2

2BhN

)
, (9)

where BhN is the slope of the differential hN elastic cross section. Note that the accuracy of the
optical approximation (the second line in (6)) is quite high for gold, ∼ 10−3. We use the optical form
throughout the paper for the sake of simplicity, although for numerical evaluations always rely on the
accurate expression (the first line in (6)). The effective nuclear thickness Eq. (7), implicitly contains
energy dependence, which is extremely weak.

In what follows we also neglect the real part of the elastic amplitude, unless specified, since it gives
a vanishing correction ∼ ρ2

pp/A
2/3.

In Table 1 the result of the calculation of the shadowing factor Rtot
A/N for the total proton-lead cross

section at
√
s = 5.5 TeV is shown. We use σNNtot = 93.1 mb and elastic slope BNN

el = 20 GeV−2, which

Table 1: The shadowing suppression factor Eq. (1) for the total, elastic, inelastic, quasielas-
tic and production cross sections.

Model Rtot
A/N Rel

A/N Rin
A/N Rqel

A/N

Glauber 0.22 0.4 0.17 0.03

agree well with the recent measurements of the TOTEM experiment [2] at
√
s = 7 TeV. We see how

strong the shadowing effect for the total cross section is.

Elastic cross section.
As far as the partial elastic amplitude is known, the elastic cross section reads,

σhAel =

∫
d2b

∣∣∣∣1− exp

[
−1

2
σhNtot T

h
A(b)

]∣∣∣∣2 . (10)

From the numerical result depicted in Table 1 we see that the elastic cross section is less suppressed by
shadowing than the total one. This shows that even at the energy of LHC the proton-lead interaction
does not reach yet the unitarity bound, where the shadowing ratios Eq. (1) are expected to be alike for
both processes.

Total inelastic cross section.
σhAin is given by the difference between the total and elastic cross sections,

σhAin = σhAtot − σhAel =

∫
d2b

{
1− exp

[
−σhNtot T hA(b)

]}
. (11)

This cross section covers all inelastic channels, where either the hadron or the nucleus (or both) break
up. According to Table 1 inelastic interactions are shadowed stronger than the total cross section.

5



Quasielastic cross section.
As a result of the collision the nucleus can be excited to a state |F 〉. Summing over final states of the
nucleus and applying the condition of completeness, one gets the quasielastic cross section,

σhAqel =
∑
F

∫
d2b

[〈
0
∣∣ΓhA(b)

∣∣F〉† 〈F ∣∣ΓhA(b)
∣∣ 0〉− ∣∣〈0 ∣∣ΓhA(b)

∣∣ 0〉∣∣2]
=

∫
d2b

[〈
0

∣∣∣∣∣∣∣ΓhA(b)
∣∣∣2∣∣∣∣ 0〉− ∣∣〈0 ∣∣ΓhA(b)

∣∣ 0〉∣∣2] . (12)

Here we extracted the cross section of elastic scattering when the nucleus remains intact.
Then in the fist term of this expression we make use of the relation,

Re

∫
d2s

T hA(~b− ~s)
A

{
1− 2ΓhN(s) +

[
ΓhN(s)

]2} ≈ 1− 1

A
T hA(b)(σhNtot − σhNel ) , (13)

and arrive at,

σhAqel =

∫
d2b

{
exp

[
−σhNin T hA(b)

]
− exp

[
−σhNtot T hA(b)

]}
. (14)

The large ”volume” terms proportional to A cancel in this expression, so one should expect a very strong
nuclear suppression, as is confirmed by the result of evaluation presented in Table 1. Strictly speaking,
this suppression is due to a combination of shadowing in the initial state and the survival probability
of the scattered hadron in the nuclear matter. Final state interactions are particularly important for
exclusive channels of hadron production. In the case of electro-weak interactions final state interactions
can imitate shadowing even when it is absent, e.g. when the coherence time is short.

Production cross section.
Quasielastic scattering is a part of the inelastic cross section Eq. (11), and the only process with no
production of new particles. Therefore it should be subtracted to get the total production cross section.
The result is rather simple,

σhAprod = σhAtot − σhAel − σhAqel =

∫
d2b

{
1− exp

[
−σhNin T hA(b)

]}
. (15)

2.2 Inelastic shadowing corrections

2.2.1 Intermediate state diffractive excitations

The Glauber model is a single-channel approximation, therefore it misses the possibility of diffractive
excitation of the projectile in the intermediate state as is illustrated in Fig. 1. These corrections called
inelastic shadowing were introduced by Gribov back in 1969 [4]. The formula for the inelastic corrections
to the total hadron-nucleus cross section was suggested in [5],

∆σhAtot = −8π

∫
d2b e−

1
2
σhNtot TA(b)

∫
M2
min

dM2 dσhNsd
dM2 dp2

T

∣∣∣∣
pT=0

∞∫
−∞

dz1 ρA(b, z1)

∞∫
z1

dz2 ρA(b, z1) eiqL(z2−z1) , (16)

where σhNsd is the cross section of single diffractive dissociation hN → XN with longitudinal momentum
transfer

qL =
M2 −m2

h

2Eh
. (17)

This correction makes shadowing stronger and nuclei more transparent [6], because it is added with
positive sign to the probability amplitude of having no interaction, exp(−σtothNTA/2). It takes care of
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Figure 1: Diagonal and off-diagonal diffractive
multiple excitations of the projectile hadron in
intermediate state

Figure 2: Data and calculations [3] for the total
neutron-lead cross section. The dashed and solid
curves correspond to the Glauber model and cor-
rected for Gribov shadowing respectively.

the onset of inelastic shadowing via phase shifts controlled by qL and does a good job describing data
at low energies [3, 7], as one can also see in Fig. 2. Notice that the higher order off-diagonal transitions
neglected in (16), including the diagonal transitions (or absorption of the excited state), are important,
but unknown. Indeed, the intermediate state X has definite mass M , but no definite cross section. It
was fixed in (16) at σhNtot with no justification. We will come back to this problem later.

There is, however, one case which is free of these problems, shadowing in hadron-deuteron interac-
tions. In this case no interaction in the intermediate state is possible, and knowledge of diffractive cross
section hN → XN is sufficient for calculations of the inelastic correction with no further assumptions.
In this case Eq. (16) takes the simple form [4, 8],

∆σhdtot = −2

∫
dM2

∫
dp2

T

dσhNsd
dM2dp2

T

Fd(t) . (18)

2.2.2 Inelastic shadowing in the eigenstate representation

If a hadron were an eigenstate of interaction, it could experience only elastic scattering (as a shadow of
inelastic channels) and no diffractive excitation were possible. In this case the Glauber formula would
be exact and no inelastic shadowing corrections were needed. This simple observation suggests to switch
from the basis of physical hadronic states, which are the eigenstates of the mass operator, to the basis of
a complete set of mutually orthogonal states which are eigenstates of the scattering amplitude operator.
This was the driving idea of description of diffraction in terms of elastic amplitudes [9, 10], and becomes
a powerful tool for calculation of inelastic shadowing corrections in all orders of multiple interactions
[11]. Hadronic states (including leptons and photons) can be decomposed into a complete set of such
eigenstates |k〉,

|h〉 =
∑
k

Ψh
k |k〉 , (19)

where Ψh
k are hadronic wave functions in the form of Fock state decomposition. They obey the orthog-

onality conditions, ∑
k

(
Ψh′

k

)†
Ψh
k = δhh′ ;
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∑
h

(
Ψh
l

)†
Ψh
k = δlk . (20)

We denote by fkNel = i σkNtot /2 the eigenvalues of the elastic amplitude operator f̂ neglecting its real
part. We assume that the amplitude is integrated over impact parameter, i.e. that the forward elastic
amplitude is normalized as |fkNel |2 = 4π dσkNel /dt|t=0. We can express the elastic fel and off diagonal
single-diffractive fsd amplitudes as,

fhNel = 2i
∑
k

∣∣Ψh
k

∣∣2 σkNtot ≡ 2i 〈σ〉 ; (21)

fhNsd (h→ h′) = 2i
∑
k

(Ψh′

k )†Ψh
k σ

kN
tot . (22)

Notice that if all the eigen amplitudes were equal, the diffractive amplitude (22) would vanish due
to the orthogonality relation, (20). The physical reason is obvious. If all the fkNel are equal, the
interaction does not affect the coherence between the different eigen components |k〉 of the projectile
hadron |h〉. Therefore, the off-diagonal transitions are possible only due to the differences between the
eigen amplitudes.

Summing all final states and making use of the completeness condition (20), then, excluding the
elastic channels one arrives at [11, 12, 13],

16π
dσhNsd
dt

∣∣∣
t=0

=
∑
i

∣∣Ψh
i

∣∣2 (σiNtot)2 −
(∑

i

∣∣Ψh
i

∣∣2 σiNtot)2

≡ 〈σ2
tot〉 − 〈σtot〉2 . (23)

If the lifetimes of the different eigenstate components of the hadron are sufficiently long, so that
they do not mix with each other during propagation through the nucleus, the cross sections for different
processes on nuclei can be written as,

σhAtot = 2

∫
d2b

{
1−

〈
exp

[
−1

2
σiNtot T

h
A(b)

]〉}
(24)

σhAel =

∫
d2b

∣∣∣∣1−〈exp

[
−1

2
σiNtot T

h
A(b)

]〉∣∣∣∣2 (25)

σhAin =

∫
d2b

{
1−

〈
exp
[
−σiNin T hA(b)

]〉}
(26)

Notice that the last expression for σhAin is already free from the diffraction contribution. Although
only elastic and quasielastic cross sections were subtracted from σhAtot in the Glauber model, Eq. (15),
after averaging over eigenstates it turns out that diffraction is subtracted as well [14].

The difference between the cross section Eq. (24) and the Glauber approximation Eq. (6), is in the
way of averaging. In the former case the whole exponential is averaged, while in the Glauber approx-
imation only the exponent is averaged. The difference should correspond to the Gribov corrections
summed in all orders. Indeed, the first order terms in the expansion of (24) and (6) cancel and in the
second order using the relation (23) we get,

∆σhAtot ≈
∫
d2b

1

4

[
〈σiNtot〉2 − 〈(σiNtot)2〉

]
T hA(b)2 = −4π

∫
d2b T hA(b)2

∫
dM2 dσhsd

dM2dt

∣∣∣
t=0

. (27)

This result is identical to Eq. (16), if we neglect there the phase shift vanishing at high energies, and
also expand the exponential.

Note that since the inelastic nuclear cross section in the form Eq. (15) is correct for eigenstates, one
may think that averaging this expression would give the correct answer. However, such a procedure
includes the possibility of excitation of the projectile and disintegration of the nucleus to nucleons, but
misses the possibility of diffractive excitation of bound nucleons which is not a small correction. We
introduce a corresponding correction in the next section.
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2.2.3 Dipole description of shadowing

The light-cone dipole representation was proposed in [13] as an effective tool for calculation of hadronic
cross sections and nuclear shadowing, relying on the observation that color dipoles are the eigenstates
of hadronic interactions at high energies, and the eigenstate method [11] allows to sum up the Gribov
inelastic corrections to all orders.

The key ingredient of this approach is the cross section of the dipole-nucleon interaction, σq̄q(rT , s),
which is an universal and flavor independent function, depending on transverse separation rT and
energy. One cannot calculate it reliably, since that would involve nonperturbative effects, but should
fit it to data. Once this cross section is known from data on a proton target, the nuclear effects can
be predicted. Still, the results of calculations remain model dependent, because the hadronic wave
functions participating in averaging Eq. (23) are poorly known.

Applications of the dipole formalism to nuclei are especially simple, if the energy is sufficiently high
to freeze the fluctuations of the dipole size during its propagation through the nucleus. Otherwise one
should rely on the path-integral technique [15, 16, 17], which takes care of these fluctuations (see below,
Sect. 3.2.2).

Due to color screening a colorless point-like dipole cannot interact with an external color field. Since
the underlying theory is non-abelian, the interaction cross section for such dipoles vanishes at rT → 0 as
σq̄q(rT ) ∝ r2

T [13], a phenomenon called color transparency2. At high energies nuclei are transparent for
small-size fluctuations of the incoming hadron, therefore the strong exponential attenuation suggested
by the eikonal Glauber formula cannot be correct and the nuclear medium should be more transparent,
as was already mentioned above. For a dipole of a fixed size rT the eikonal form of Eqs. (24)-(26) is
exact. In this case the role of the eigenvalues of the cross section σiNtot is played by the dipole one σq̄q(rT ),
and the total hadron-nucleus cross section has the form [13],

σhAtot = 2

∫
d2b

∫
d2rT |Ψh(rT )|2

[
1− e−

1
2
σq̄q(rT )TA(b)

]
. (28)

It is interesting to point out that although nuclear transparency, which is the probability of no-
interaction, exponentially falls with nuclear thickness, after averaging over dipole sizes for a long path
in the nuclear medium the resulting transparency drastically changes [13],

e−σq̄q(rT )TA ⇒
∫
d2rT |Ψh(rT )|2 e−σq̄q(rT )TA ∝ 1

TA
. (29)

Here we assumed a Gaussian shape for the rT -dependence of the hadronic wave function Ψh(rT ), and
small-rT regime for the dipole cross section, σq̄q(rT ) ∝ r2

T , which is justified for a large nuclear thickness
TA.

The result (29) should be compared with the exponential attenuation in the Glauber model, given
by exp(−σhNtot TA). Apparently, the difference cannot originate from the lowest order inelastic correction
Eq. (16), which has the same exponential dependence on TA. This color transparency effect includes
all the higher order inelastic corrections.

The Gribov inelastic shadowing corrections were calculated in [14, 18, 19, 20] for various soft inter-
action processes. Although the nuclear transparency significantly increases for heavy nuclei, the related
variation of shadowing is pretty mild. This happens because for heavy nuclei the transparency term
in the cross section (the second term in Eq. (6)) is a small correction to the big first (volume) term.
Even a considerable variation of this small correction does not affect much the total cross section, i.e.
shadowing. Indeed, the Gribov correction evaluated in Fig. 2 at low energy is several percent. With
rising energy the hadron-nucleus amplitude approaches the black-disc limit (unitarity bound), where

2Actually, the cross section behaves as r2
T ln(rT ) [13], but with a good accuracy one can fix the logarithm at an effective

value of rT typical for the process under consideration.
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Gribov corrections vanish, because all eigen amplitudes become equal. We found that at the energy of
LHC the Gribov corrections to the numbers in Table 1 are only minus one percent. So we skip this
comparison here, but one can find the details of the calculations in [14, 18, 19].

2.3 Shadowing in photo-nuclear reactions

At first glance the weakly interacting particles, like photons or leptons, should interact with nuclei with
no shadowing. Indeed, applying the Glauber model expression (6) to the photoabsorption cross section
σγAtot one gets a vanishingly small shadowing effect. However, data presented in Fig. 3 clearly show that
the photoabsorption cross section is strongly shadowed as function of energy. The nuclear ratio

Figure 3: Nuclear ratio Rγ
A/N for lead as function of photon energy. The curves correspond

to a fit and model calculations [21].

Rγ
A/N =

σγAtot
Zσγptot + (A− Z)σγntot

, (30)

is significantly suppressed by nuclear effects, which should be interpreted as shadowing.
The mechanisms of shadowing for photon interactions are well explained in the comprehensive review

[22]. The observed shadowing suppression is a manifestation of the hadronic properties of the photon.
Namely, the photon interacts with hadrons via its hadronic fluctuations. The observed smallness of the
photoabsorption cross section is related to the smallness of the fluctuation probability (it is proportional
to αem), while the hadronic cross section is large. Although the fluctuation life time t ∼ 1/mh is quite
short, it is subject to Lorentz time dilation, and at sufficiently high energies it maybe much longer
than the nuclear size, as is illustrated in Fig. 4. In this regime the photon-nucleus interaction is indeed
shadowed as much as in a hadron-nucleus collision. The transition region between the short and long tXc
regimes can be described adding up the two contributions from the single- and double-step interactions,
as is illustrated in the left part of Fig. 4. In the case of vector meson dominance, i.e. dominance of one
pole in the dispersion relation in Q2 for the amplitude, the sum of the two contributions to the photon
nucleus amplitude, pictorially shown in the left part of Fig. 4, reads [22],

Rγ
A/N = 1− 8π

AσγNtot

dσγ→Vdiff

dp2
T

∣∣∣∣∣
pT=0

∫
d2b

∞∫
−∞

dz1 ρA(b, z1)

z1∫
−∞

dz2 ρA(b, z2)e−iq
V
L (z2−z1) e−

1
2
σV Ntot TA(b,z2,z1), (31)
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Figure 4: The sum of the two possibilities of either elastic γN scattering on a bound nucleon,
or with preceding diffractive production of an intermediate state X (left), at high energies
is equivalent to photon interaction via a hadronic fluctuation X (right).

where qVL = m2
V /2Eγ; TA(b, z2, z1) =

∫ z1
z2
dz ρA(b, z). Here we neglected the real parts of the elastic and

diffractive amplitudes.

This mechanism of shadowing is a particular case of Gribov corrections, and its evaluation is suffering
of similar problems. First of all, even in the lowest order correction, the second term in Eq. (31), the
value of σV Ntot is unknown and is fitted to data. The higher order multiple scattering corrections contain
off-diagonal diffractive transitions γ → X → X ′ → X ′′..., which are also unknown. These higher
order corrections become more important with increasing photon virtuality. Indeed, the size of the q̄q
fluctuation of the photon decreases as 〈r2

T 〉 ∼ 1/Q2 and the magnitude of shadowing should diminish
accordingly. In hadronic representation it does not look that simple and can be achieved only by a
specific tuning of diagonal and off-diagonal diffractive amplitude, which have to cancel each other.
This is usually modeled within generalized vector dominance models, but the predictive power of such
approaches is very low.

The alternative color dipole approach naturally incorporated the color transparency features, how-
ever the q̄q distribution amplitudes cannot be calculated perturbatively at low Q2 and can only be
modeled. These amplitudes were calculated within the instanton vacuum model in [23] and the cross
section of Compton scattering on protons and nuclei was evaluated within the dipole formalism in [24].

2.4 PCAC and shadowing of soft neutrino interactions

Neutrinos are known as an significant source for the axial current, which is subject to nuclear shadowing,
similar to that for the vector current, discussed in the previous section. There are, however, specific
features of shadowing of the axial current, related to partial conservation of axial current (PCAC),
which are absent in the case of vector current. Indeed, the vector current is ”trivially” conserved,
∂µ J

V
µ ∝ (mn −mp) ≈ 0, since the proton and neutron masses cancel. At the same time conservation

of the axial current seems to be heavily broken, ∂µ J
A
µ ∝ mn + mp. In order to get the axial current

conserved one has to introduce into JAµ additional terms besides γ5γµ, and this is how the massless
Goldstone pseudo-scalar pion appears. In reality the pion has a small mass, this is why the current is
conserved partially,

∂µJ
A
µ = m2

π fπ φπ, (32)

where mπ and fπ ≈ 0.93mπ are the pion mass and decay coupling, and φπ is the pion field.

A beautiful manifestation of PCAC is the Goldberger-Treiman relation [25], which bridges weak and
strong interactions. It surprisingsly connects the pion decay constant with the pion-nucleon coupling,
which seem to have very little in common. Indeed, the former depends on the pion wave function, while
the latter is controlled by the wave function of the nucleon. Nevertheless, data on β-decay and muon
capture confirm this relation between very different physical quantities.
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In the case of high energy neutrino interactions PCAC leads to the Adler relation (AR) between the
cross sections of processes initiated by neutrinos and pions [26],

d2σ(νp→ l X)

dQ2 dν

∣∣∣∣
Q2=0

=
G2

2π2
f 2
π

E − ν
Eν

σ(πp→ X). (33)

where E is the neutrino energy; G = 1.166×10−5GeV −2 is the electro-weak Fermi coupling; Q2 = −q2
µ,

where qµ = kµ − k′µ and ν = E − E ′ are the 4-momentum and energy transfer in the ν → l transition
(the same notation as for neutrinos should not cause confusion).

The Adler relation expresses the axial current interaction with that of the pion, similar to the
vector dominance model, which relates the interactions of the vector current and ρ-meson. This make
it tempting to interpret the Adler relation as pion dominance. It turns out, however, that a neutrino
cannot fluctuate to a pion, ν → πl, because the pion pole in the dispersion relation in Q2 for the axial
current does not contribute to the interaction of the neutrino at high energies [27, 28, 29]. Indeed, the
axial current JAµ (Q2) can be presented as,

JAµ (Q2) =
qµ fπ

Q2 +m2
π

T (πp→ X) +
fa

Q2 +m2
a

Mµ(ap→ X) + ... (34)

Here the second and following terms represent the contributions of the a1 meson and other heavier
axial-vector states like ρ− π and other multi-particle states.

The first term in (34), corresponding to the pion pole, contains the factor qµ, which then terminates
its contribution to the cross section, Eq. (33). Indeed, the amplitude of the reaction is

A(ν p→ l X) ∝ Lµ J
A
µ , (35)

where Lµ = l̄(k′)γµ(1 + γ5)ν(k) is the lepton current, which is transverse, i.e. qµ Lµ = 0 (up to the
lepton mass, assumed to be zero in what follows, unless specified). Therefore, the pion term in (34)
does not contribute to the amplitude Eq. (35), and this is true at any Q2.

Thus, PCAC does not mean pion pole dominance, but connects the contribution of heavy axial states
(the second term in Eq. (34)) with the nonexistent pion contribution [27, 28, 29]. One can see that
in the Q2-dependence of the neutrino cross section at small Q2. Fitting the measured Q2-dependence
with the parametrization (Q2 +M2

eff )
−2, one gets Meff ≈ 1.1 GeV [29], which is a clear evidence of the

dominance of heavy states in the axial current.

2.4.1 Shadowing in the total neutrino cross section

Nuclear shadowing of neutrinos was predicted a long time ago [30] based on the simple observation that
shadowing in the pion-nucleus cross section immediately means that neutrino cross section is shadowed
as well, because both are connected by the Adler relation. However, this connection may be affected
by coherence phenomena, which are discussed below.

As far as the effective mass of a typical hadronic fluctuation of a neutrino, ν → l+ a, is large, quite
a high energy, ν ∼> 10 GeV, is needed to make the fluctuation lifetime,

tfluct =
2E

M2
eff

, (36)

comparable with the radii of heavy nuclei. Then one might jump to the conclusion that there should
be no shadowing at low energies.

However, this conclusion is not correct. It is based on the usual wisdom that the fluctuation lifetime
and the coherence time are equivalent quantities, which is usually correct, but not in this case. The
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Figure 5: Left: Direct inelastic interaction of the axial current with a bound nucleon. Right:
Diffractive pion production preceding the inelastic collision.

amplitude of inelastic neutrino-nucleus collision is shown schematically in Fig. 5. The left picture
corresponds to a direct inelastic interaction of the projectile axial current with a bound nucleon, while
in the right picture the diffractively produced pion experiences an inelastic collision. This looks similar
to the calculation of shadowing for the photoabsorption cross section done in Sect. 2.3 in the case of
vector dominance. In fact, it seems to be even better justified, since the pion pole is much closer to
the physical region, than the ρ pole. However, as we have just learned, it is not the pion pole which
is behind the Adler relation, but heavier axial-vector singularities, which conspire together and imitate
the pion pole. Nevertheless, the diffractively produced pion is on mass shell, but the details of the
dynamics are hidden in the amplitude of diffractive neutrino-production of pion.

Since both contributions depicted in Fig. 5 lead to the same final state, they can interfere. Squaring
the inelastic amplitude we get the following expression for the ratio (1) for the total neutrino-nucleus
cross section [31],

Rν
A/N = 1− 8π

AσνNtot

dσν→πdiff

dp2
T

∣∣∣∣
pT=0

∫
d2b

∞∫
−∞

dz1 ρA(b, z1)

z1∫
−∞

dz2 ρA(b, z2)e−iq
π
L(z2−z1) e−

1
2
σπNtot TA(b,z2,z1), (37)

where TA(b, z2, z1) was defined in Eq. (31). We neglected here the higher order terms in multiple
interactions.

At very low energy where qπL is large, the second term in (37) is suppressed, and the first term, which
corresponds to a nuclear cross section proportional to A, dominates. At high energies qπL � 1 can be
neglected and the integrations over z1,2 can be performed analytically [31]. Due to the Adler relation
the first term in (37) and the volume part of the second term cancel, and the rest is the ”surface” term
∝ A2/3.

It turns out that the high-energy regime actually starts at rather low energies if Q2
∼< m2

π. Indeed,
for elastic neutrino-production of pions, νp → l πN , the longitudinal momentum transfer, qπL = (m2

π +
Q2)/2ν, i.e. the coherence time,

tπc =
1

qπL
=

2ν

m2
π +Q2

, (38)

is very long even at low energy of few hundred MeV. This is actually what matters for the onset of
shadowing. As for the fluctuation lifetime Eq. (36), it is indeed much shorter.

This is a result of the nontrivial origin of PCAC. The impossibility for the axial current to fluctuate
into a pion leads to the dominance of off-diagonal processes, like ν → µa1 and a1N → πN . The
same happens for the vector current, if one considers, for example, ρ photoproduction via intermediate
excitation ρ′: γ → ρ′ and ρ′N → ρN . Such an off-diagonal contribution is negligibly small for the
vector current, but is a dominant one for neutrinos. Only for diagonal transitions the fluctuation
lifetime and the coherence time are equal, tfluct = tc. For neutrino interactions the former controls the
Q2 dependence of the cross section, while the latter governs shadowing.
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The results of numerical evaluation of the shadowing effect Eq. (37) for neon are plotted in Fig. 6.
The calculations [31] done within the Glauber approximation, Eq. (37), and also including the Gribov’s

Figure 6: The neon to nucleon ratio of to-
tal neutrino cross sections at different Q2 [31,
32]. Dashed and solid curves correspond to the
Glauber and Gribov corrected calculations.

Figure 7: The neon to proton ratio of the total
neutrino cross sections, calculated in [31, 32] for
x < 0.2 and Q2 < 0.2 GeV2. The data present
the BEBC results [33].

inelastic corrections (important at high energies ν > m2
a1
RA) are plotted in Fig. 6 by solid curves as

function of energy, for different Q2.

The calculated shadowing effects are compared with BEBC data [33] in Fig. 7. As was anticipated,
the shadowing exposes an early onset, and a significant suppression occurs at small Q2 in the low energy
range of hundreds MeV. This is an outstanding feature of the axial current. This seems to be supported
by data, although with rather poor statistics.

2.4.2 Diffractive neutrino interactions: Breakdown of PCAC by shadowing

The process ν+ p→ l+π+ p offers probably the most stringent test of PCAC in neutrino interactions.
Indeed, the analysis performed by Piketty and Stodolsky [28] revealed a potential problem related
to the dispersion representation, Eq. (34). Assuming the dominance of the a1 pole in the dispersion
relation they arrived at an equation connecting the elastic and diffractive pion-nucleon cross section,
σ(πp→ a1p) = σ(πp→ πp). This relation strongly contradicts data: diffractive production of a1 meson
is more than an order of magnitude suppressed compared with the elastic cross section.

This puzzle was relaxed in [34, 29] by pointing out its shaky point, namely, the a1 pole cannot
dominate in the axial current, since it is quite a weak singularity compared to the ρ pole in the
vector current case. In fact, the main contribution to the expansion Eq. (34) comes from the ρ-π
and 3π cuts, related to diffractive pion excitations. The invariant mass distribution for diffractive pion
excitations peaks at M ≈ 1.1 GeV [35] and is well explained by the so called Deck mechanism [36] of
diffractive excitation π → ρπ. The interpretation of this peak has been a long standing controversy,
until a phase-shift amplitude analysis (see references in [37]) eventually revealed the presence of the
weak a1 resonance having a similar mass. Summing up all diffractive excitations (excluding large
invariant masses corresponding to the triple-Pomeron term), one concludes that the magnitudes of
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single-diffractive and elastic pion-proton cross section are indeed similar. This helps to resolve the
Piketty-Stodolsky puzzle.

Nevertheless, it was demonstrated that absorptive corrections break the relation between the heavy
states and pion in the dispersion relation (34) imposed by PCAC. The deviation from the Adler relation
was estimated in [38, 39, 40] at about 30%.

Even more dramatic breakdown of PCAC caused by nuclear shadowing was found in [38] for diffrac-
tive neutrino-production of pions on nuclei. These processes are usually classified as coherent or incoher-
ent, which according to the conventional terminology correspond to processes which leave the nucleus
intact or the nucleus breaks up into fragments, respectively.

In what follows we assume the validity of the Adler relation for a nucleon target, in order to identify
the net nuclear effects. In the coherent pion production process the amplitudes on different nucleons
interfere, and the interference is enhanced by the condition that the nucleus remains intact. The
coherence effects can lead to substantial deviations from the AR and from simplified expectations, as
is demonstrated below.

In addition to the pion coherence time, Eq. (38), another time scale related to heavy axial-vector
state is important,

tac =
1

qaL
=

2ν

m2
a +Q2

, (39)

The two scales control the amplitude of coherent neutrino-production [38], whose imaginary part has
the form,

MνA→lπA(ν,Q2, b) = M1(ν,Q2, b)−M2(ν,Q2, b), (40)

where

M1(ν,Q2, b) = MνN→lπN(ν,Q2)

∞∫
−∞

dz eiq
π
Lz ρA(z, b) e−

1
2
σπNtot TA(b,z); (41)

M2(ν,Q2, b) = MνN→laN(ν,Q2)MaN→πN(ν)

∞∫
−∞

dz ei(q
π
L−q

a
L)z ρA(z, b) e−

1
2
σπNtot TA(b,z)

×
z∫

−∞

dz1e
iqaLz1 ρA(z1, b) e

− 1
2
σaNtot [TA(b,z1)−TA(b,z)]. (42)

The structure of the amplitude is similar to the one in Eq. (37). While the first term, M1, corresponds
to pion production by the neutrino without any preceding interaction, the second term M2 corresponds
to diffractive production of the heavy state a preceding the pion production. This is the first order
Gribov inelastic shadowing correction [4] to the coherent pion production amplitude.

The results for coherent production of pions on lead are depicted in Fig. 8 as function of transferred
energy ν, for several values of Q2. The suppression predicted at low energies is related to the shortness
of tπc � RA and lack of coherence. At higher energies the nuclear ratio at Q2 = 0 forms a plateau
in the energy interval 0.5 ∼< ν ∼< 5 GeV, which corresponds to the condition tπc � RA, but tac � RA.
The height of the plateau corresponds to the Adler relation, which holds in this regime of short lac .
Remarkably, at higher energies Rcoh

A/N(ν,Q2 = 0) steeply falls from the A-dependence A2/3 down to A1/3,
exposing a dramatic violation of the Adler relation. The source of the breakdown is shadowing, which
begins at long tac .

As function of Q2 the plateau considerably shrinks leaving almost no room for the Adler relation
(extrapolated to nonzero Q2) to hold, as one can see from the few examples depicted in Fig. 8.

A similar behavior is expected for incoherent production of pions ν +A→ l+ π+A∗, except at the
low energy range where no suppression is expected, because pions are produced on different nucleons

15



Figure 8: Nuclear ratio Rcoh
A/N(ν,Q2) of pT -

integrated cross sections of coherent neutrino-
production of pions on lead at different Q2.

Figure 9: The same as in Fig. 8 for incoher-
ent production on lead at Q2 = 0, 0.2, 0.5 and
1 GeV2.

incoherently. Therefore the plateau corresponding to the Adler relation starts at very low energies,
as is demonstrated in Fig. 9 for several values of Q2. At higher energies, when taC ∼< RA initial state
shadowing causes an additional suppression, and similarly to the coherent case the A dependence drops
from A2/3 down to A1/3 as is demonstrated in Fig. 9 (the details of calculations can be found in [38]).
Again, shadowing led to a dramatic breakdown of PCAC.

3 Shadowing of deeply virtual photons

The sizable shadowing effects observed above were caused by the large cross sections of soft interactions
of light hadrons, or soft hadronic fluctuations of photons and leptons at a low virtuality. It has been
observed, however, that considerable shadowing also suppresses the cross section of hard reactions on
nuclei, like deep-inelastic lepton scattering (DIS), Drell-Yan reaction, etc. In what follows we demon-
strate that the dominant contribution to the shadowing effects comes from the soft component of hard
processes, while the hard component is not shadowed.

The cross section of deep inelastic lepton scattering l +N → l′ +X has the form,

d2σ

dxdQ2
=

4πα2
em

Q4

{(
1− y − x2y2m2

N

Q2

)
F2(x,Q2)

x
+ y2F1(x,Q2)

}
, (43)

where the invariant structure functions can be expressed in terms of the total cross sections σT (x,Q2)
and σL(x,Q2)of transversely and longitudinally polarized virtual photons,

F2(x,Q2) =
Q2(1− x)

4π2αem
(σT + σL) ;

F1(x,Q2) =
Q2(1− x)

8π2αem x
σT . (44)

We use the standard notations,
√
s and W are the c.m. energies; x = Q2/(2qP ), y = Q2/(2kP ), where

k, q and P are the 4-momenta of the initial lepton, virtual photon and the target nucleon, Q2 = −q2.
Notice that the nuclear ratio of the structure functions,

FA
2

FN
2

=
σγ
∗A
T + σγ

∗A
L

σγ
∗N
T + σγ

∗N
L

, (45)
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which is independent of the lepton energy, is not the same as the measured ratio of the lepton-target
cross sections,

σlADIS
σlNDIS

=
FA

2

FN
2

(1 + ξRA
L/T )(1 +RN

L/T )

(1 +RA
L/T )(1 + ξRN

L/T )
, (46)

where

ξ =
4(1− y)− 4m2

Nx
2

Q2

4(1− y) + 2y2 +
4m2

Nx
2

Q2

(47)

is the photon polarization parameter, and

R
A(N)
L/T =

(
1 +

4m2
Nx

2

Q2

)
σ
γ∗A(N)
L +

4m2
Nx

2

Q2 σ
γ∗A(N)
T

σ
γ∗A(N)
T

≈ σ
γ∗A(N)
L

σ
γ∗A(N)
T

. (48)

According to (46) the lepton nucleon cross section ratio is only equal to the structure function ratio,
if there are no nuclear effects in RA

L/T or ξ = 1. This is assumed in all NMC data and supported by

experimental observations. In the kinematical region relevant for NMC, data for RA
L/T show practically

no A dependence [41]. Nevertheless this problem needs further study and more precise data.
Already the first DIS measurements at SLAC [42] showed that the structure function F2(x,Q2) is

nearly constant as function of Q2 at fixed x. An explanation of this phenomenon was given by Bjorken
[43] and by Feynman [44]. If the transverse momenta of the partons are neglected, then the cross
sections for transverse and longitudinal photons scattering off spin-1/2 partons, i. e. quarks, are given
by

σT =
4π2αemZ

2
f

Q2(1− x)
δ

(
1− x

xq

)
σL = 0, (49)

where xq is the momentum fraction of the proton carried by the struck quark and Zf is the flavor
charge in units of the elementary charge. The δ-function arises from momentum conservation and gives
a physical meaning to the Bjorken variable. In the Breit frame [45], x is the momentum fraction of the
proton carried by the struck quark. For massless quarks, the longitudinal cross section is zero due to
helicity conservation. Introducing the density qf (x) of quarks of flavor f , inside the proton, one obtains
a simple partonic interpretation of the structure functions,

F2(x) = x
∑
f

Z2
f (qf (x) + q̄f (x)), (50)

FL = 0. (51)

In the naive parton model, the structure functions depend only on x and not on Q2, the longitudinal
structure function vanishes and one obtains the Callan-Gross relation [46],

F2 − 2xF1 = 0. (52)

These equations are the basic results of the parton model and they are approximately confirmed by
experiment.

One of the great achievements of QCD is the successful description of the deviations from the naive
parton model seen in experiment. In particular at low x deviations from Bjorken scaling become quite
pronounced. In the QCD improved parton model, perturbation theory is applied to calculation of
the corrections to the parton model predictions. Increasing the photon virtuality one enhances the
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resolution of the parton probe, and one sees more partons. New partons appearing at higher resolution
are generated by the splitting processes G → 2G, G → qq̄, q → qG. The evolution of the structure
function with Q2 is described by the DGLAP equations [47, 48, 49, 50], which for the singlet parton
densities read,

Q2 d

dQ2

 qf (x,Q
2)

G(x,Q2)

 =
αs
2π

1∫
x

dx1

x1

 Pff

(
x
x1

)
PfG

(
x
x1

)
PGf

(
x
x1

)
PGG

(
x
x1

)

 qf (x1, Q

2)

G(x1, Q
2)

 , (53)

where qf is a quark of a given flavor, and the splitting functions P (x) are calculated perturbatively [51].
All the soft physics is contained in the parton distributions. These are essentially contaminated by

nonperturbative interactions and have to be parametrized at some input scaleQ2
0. Different parametriza-

tions have been provided by several collaborations [52, 53, 54] performing global analyses of data in
leading and next to leading orders. With the parton distributions as input, one can then calculate F2

at a higher value of Q2. The other essential property is that the parton distributions are universal, i.e.
they do not depend on the process under consideration, but only on the hadron state. This is based on
QCD factorization proven for some processes and up to higher twist effects [55].

3.1 Phenomenology of shadowing in DIS

The space-time picture of an interaction within the parton model varies significantly depending on
the reference frame. Only observables are Lorentz invariant, but not our theoretical ideas about the
dynamics of the interaction. In particular, what looks like absorption of the virtual photon by a parton
in the nucleon in the Breit frame, looks very different in the rest frame of the proton. Here the same
process looks like fluctuation of a high-energy virtual photon into a colorless q̄q dipole, with a subsequent
interaction of the dipole with the target via gluonic exchanges.

Correspondingly, shadowing also looks quite different. In the infinite momentum frame of the nucleus
both the nucleus and each bound nucleon are Lorentz contracted by the γ-factor. A Lorentz-boosted
nucleus looks like a pancake, as well as the bound nucleons. So if the nucleons do not overlap in the
nuclear rest frame, they are still separated in the Breit frame also. However, the Lorentz γ-factor of
the small-x partons is reduced by the factor x, so they contract much less and start overlapping, like
is illustrated in Fig. 10. This leads to a fusion of partonic chains originated from different bound

x

Figure 10: Overlap of parton clouds originated
from different nucleons in a fast nucleus due to
the reduction of the Lorentz factor at small x

nucleons [56], and to a reduction of parton densities, and this produces shadowing.
In the nuclear rest frame the physics of shadowing is more intuitive and corresponds better to its

optical analogy. In this reference frame the q̄q-dipole fluctuation of the photon propagates through
the nucleus and experiences multiple interactions, which lead to a reduction of the photon flux, and
eventually to a suppression of the cross section. This is the same phenomenon as parton fusion, but
seen from different reference frames.
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The results of DIS measurements on nuclear targets are usually presented in the form of a ratio,
Eq. (1), for the structure functions

RA/N(x,Q2) =
FA

2 (x,Q2)

AFN
2 (x,Q2)

. (54)

The shadowing suppression factor RA/N(x,Q2) < 1 can be estimated using the same two-step correction
as for real photons, as is illustrated in Fig. 4. It can be calculated with the same formula (16) replacing
σhNsd ⇒ σγ

∗N
sd , although the value of the absorption cross section remains problematic.

Shadowing in DIS on nuclei begins at sufficiently high energies W 2 � Q2, i.e. at small x � 1. In
this case the coherence time, also called Ioffe time, in the target rest frame reads,

tc =
1

qL
=

2ν

Q2 +M2
X

≈ 1

2mNx
. (55)

One should expect the onset of shadowing at tc ∼> 2 fm, i.e. at x < 0.05, and saturation at tc � RA.
Actually the saturation is not exact due to the contribution of large masses, increasing with 1/x.
Expression (24) written in the ”frozen” approximation, i.e. with no mixing of different eigen components
during propagation through the nucleus, includes all the inelastic shadowing corrections and can be
applied to DIS. Expanding the exponential one gets in the lowest order in multiple interactions [57, 58],

RA/N(x,Q2) = 1− 1

4
σeff〈TA〉+ ... , (56)

where 〈TA〉 = (1/A)
∫
d2b T 2

A(b) is the mean value of the nuclear thickness function, and

σeff =
〈(σiNtot)2〉
〈σiNtot〉

. (57)

It is interesting to notice that in this ratio the numerator and denominator are controlled by different
scales. Let us classify the hadronic fluctuations of a highly virtual photon as either hard or soft, as is
presented in Table 2. Naturally, hard eigenstate fluctuations interact weekly with the cross σitot ∼ 1/Q2,

Table 2: Contributions of soft and hard fluctuations of a virtual photon to the DIS cross
section and to nuclear shadowing.

Fluctuation weight: Wi σitot Wi σ
i
tot Wi (σ

i
tot)

2

Hard ∼ 1 ∼ 1/Q2 ∼ 1/Q2 ∼ 1/Q4

Soft ∼ µ2/Q2 ∼ 1/µ2 ∼ 1/Q2 ∼ 1/µ2Q2

while soft ones have a large cross section σitot ∼ 1/µ2, where µ is a soft hadronic scale. At the same time,
hard fluctuations dominate in a highly virtual photon, while soft ones appear rarely with a probability
suppressed at least as 1/Q2 (1/Q4 for longitudinally polarized photons). So smallness of the hard
cross section is compensated by the large weight, and vice versa. Thus, both contributions, hard and
soft, behave like 1/Q2, and as Table 2 shows, the DIS cross section 〈σitot〉 gets a finite contribution
from the soft interactions at any high Q2. However the shadowing term in (56), as well as diffraction,
turn out to be dominated by soft interactions, whose contribution scales as 1/Q2 similar to the DIS
inclusive cross section. Therefore the x-dependence of σeff (x,Q

2) should be pretty mild, (1/x)δ, where
δ = 2∆IP (µ2)−∆IP (Q2). The Pomeron intercept αIP (0) = 1 + ∆IP (Q2) rises with Q2, so the two terms
in δ essentially compensate.
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Figure 11: Logarithmic Q2-derivative of the ratio
of structure functions for tin to carbon. The data
are from [41].

Figure 12: Nuclear shadowing versus scaling vari-
able n(x,Q2, A) (see text). The data for Li, C
and Ca are from [59, 60].

Another interesting consequence of the presence of two scales in the nuclear shadowing term in (56)-
(57) is the absence of Q2 dependence in the nucleus-related denominator, 〈σitot〉. The Q2 dependence
of RA/N(x,Q2) comes from the nucleon structure function FN

2 (x,Q2) in the denominator. Comparison
with NMC data presented in Fig. 11 demonstrated good agreement. This fact makes questionable the
possibility of extracting the nuclear gluon density from Q2 dependence of RA/N(x,Q2) via a DGLAP
based analysis. Indeed, the DGLAP equations relate the logarithmic Q2 derivative of the structure
function at high Q2 to the gluon density [61]. Correspondingly, one can extract gluon shadowing from
the Q2 variation of RA/N(x,Q2) as was done in [62]. However, data presented in Fig. 11 can be explained
with the lowest q̄q Fock component of the virtual photon, containing no gluons.

Furthermore, one can calculate the effective cross section Eq. (57) since the numerator 〈(σitot)2〉
according to Eqs. (21) and (27) is related to diffraction,

σeff =
16π

σγ
∗N
tot (x,Q2)

∫
dM2

X

dσγ
∗N
sd (x,Q2)

dM2
X dp

2
T

∣∣∣∣∣
pT=0

, (58)

So far we neglected in (56) only the higher order multiple interactions, hoping that σeff〈TA〉 is
small. If, however, x is not sufficiently small for the ”frozen” approximation, the phase shifts diminish
the shadowing effect. These corrections should be done similar to Eq. 16, and another simplifying
approximation is the one made in (55), where we fixed M2

X = Q2. In this case Eq. (56) is generalized
for the regime of shadowing onset as [57, 58],

RA/N(x,Q2) =
σγ
∗A
tot (x,Q2)

σγ
∗N
tot (x,Q2)

≈ 1− 1

4
σeff 〈TA〉 F 2

A(qL) ≡ 1− n(x,Q2, A), (59)

where the longitudinal nuclear form factor

F 2
A(qL) =

1

A〈TA〉

∫
d2b

∣∣∣∣∣∣
∞∫

−∞

dz ρA(b, z) eiqLz

∣∣∣∣∣∣
2

(60)
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takes into account the effects of the finite coherence time tc ≈ 1/qL, Eq. (55). At large qL > 1/RA, the
nuclear form factor (60) vanishes and suppresses the shadowing term (59). This is easily interpreted:
for large qL the fluctuation lifetime and its path in nuclear medium are short, and shadowing is reduced.

In expression (59) all ingredients are calculable for different nuclei, and as functions of x and Q2.
This invites the introduction of a scaling variable n(x,Q2, A) defined in (59) [57, 58], which should make
shadowing universal for all nuclei, and values of x and Q2. In Fig. 12 NMC data points [59, 60] for
RA/N(x,Q2), each having specific values of x and Q2 are plotted against the variable n(x,Q2, A). Data
confirm the predicted scaling with good accuracy.

In terms of parton distribution functions (PDF) one can disentangle shadowing for quark and gluons,
based on the triple-Regge phenomenology. The cross section of the single-diffractive process, γ∗+N →
X + N , can be expressed in terms of the triple-Regge graphs. Indeed, summing up all final state
excitations X, one can apply the unitarity relation to the γ∗-IP amplitude, or to the total cross section
σγ
∗IP
tot , as is shown in Fig. 13. The latter, according to (51), is proportional to the structure function of

P

2

P P PP

P P

P

Σ
X

X

totσ
γ∗

N

γ∗

N N N

,γ∗ γ∗

N N

Figure 13: The cross section of single diffraction,
γ∗N → XN summed over all excitation chan-
nels at fixed effective mass MX . The γ∗-IP total
cross section at high collision energies is a sum
of Reggeon and Pomeron exchanges.

PP

P

P

P P

P

P
σ

γ∗ γ∗
σ

γ∗ γ∗ γ∗ γ∗q g

q

Figure 14: The Gribov correction with q̄q (left)
and q̄q + g (right) intermediate states with large
invariant mass, which is related to small frac-
tional momenta either of a quark, or the gluon
respectively.

the target, i.e. the Pomeron, so one can say that this way one can measure the PDF of the Pomeron
[63].

Provided that the effective mass of the excitation is large (but not too much), s0 � M2
X � s, one

can describe the Pomeron-hadron elastic amplitude via exchange of the Pomeron or secondary Reggeons
in the t-channel. Then one arrives at the triple-Regge graphs, which lead to the cross section [64],

dσγ
∗N→XN
sd

dxF dt
=
∑
i=IP ,IR

GIPIP i(t)(1− xF )αi(0)−2αIP (t)

(
s

s0

)αi(0)−1

. (61)

Here xF is the Feynman variable for the recoil nucleon in the c.m. of collision, xF ≈ 1−M2
X/s; GIPIPIP (t)

and GIPIPIR(t) are phenomenological triple-Regge vertices.

In terms of quark-gluon intermediate states the Reggeon and Pomeron exchanges correspond to the
photon fluctuating either to heavy q̄q or q̄qg fluctuations respectively, as is depicted in Fig. 14. In the
latter case what is important is that the large invariant mass Mx is due to a large difference between
the light-cone momenta of the q̄q and the g. In terms of PDFs, the Reggeon and Pomeron parts of σγ

∗IP
tot

correspond to measurements of the quark, or gluon distribution functions.

In the case of Gribov shadowing corrections the two Pomerons couple to different bound nucleons.
Notice that the Gribov correction in the elastic γ∗-A amplitude, Fig. 4, comes from different unitarity
cuts [65] corresponding to single and double inelastic interactions in the nucleus, or single diffraction,
as shown in Fig. 13.
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3.1.1 Models for Gribov corrections

The Gribov correction to the nuclear PDF for the parton j was calculated within the usual approach
[5], but formula (16) was presented in the form [66, 67, 68],

δfj/A(x,Q2) = −8π Re

∫
d2b

∞∫
−∞

dz1 ρA(b, z1)

∞∫
z1

dz2 ρA(b, z2)e−
1
2
σhNeffTA(b,z1,z2)

×
∫ xIP ,0

x

dxIP e
ixIPmN (z2−z1)f

D(4)
j/N (β,Q2, xIP , pT )pT=0, (62)

where xIP = (M2
X +Q2)/s; MX is the invariant mass of the diffractive excitation; β = x/xIP ; f

D(4)
j/N is the

diffraction PDF differential in four variables. The small real part of the amplitude and terms ∼ 1/A
are neglected.

This approach suffers from the same problems as Eq. (16), namely, the sum over the higher order
Gribov corrections, depicted in Fig. 1, is replaced by the eikonal attenuation exponential with the
effective cross section [66] written in the same way as Eq. (58),

σeff =
16π

fj/N(x,Q2)

∫ xIP ,0

x

dxIP f
D(4)
j/N (β,Q2, xIP , tmin) (63)

There are, however, several concerns related to this assumption:

• Within the range of Bjorken x where data on DIS on nuclei are available, this cross section
is significantly varying during propagation through the nucleus. Only at very small x ∼< 10−3

hadronic fluctuations of a photon are ”frozen” by Lorentz time dilation. Still, this never is precise
enough for the fluctuations containing gluons, which are a source of gluon shadowing.

• Even if a fluctuation is ”frozen”, it is not correct to use the averaged cross section in the exponent,
the whole exponential should be averaged. The example given above in Eq. (29) shows that the
nucleus becomes much more transparent compared to the exponential attenuation assumed in (62).
The difference is exactly the Gribov corrections. Notice that a better result was achieved in [68],
based on the Schwimmer model [69]. The nuclear transparency was found to depend on nuclear
thickness as in (29). However the way how the phase shift was introduced in the calculations
had no justification, and the validity of the Schwimmer model at rather large x, where data are
available, is doubtful.

• Gluon shadowing is self-quenching. Once it becomes strong, it affects and suppresses the value of
σeff , which is defined in (63) on a free nucleon. Correspondingly, gluon shadowing gets reduced.
Such a self-quenching process leads to a nonlinear equation derived in [70, 71] in the frozen dipole
approach.

The calculations with Eq. (62) and data for the diffractive structure function led to a magnitude of
gluon shadowing, which considerably exceeds the results of other approaches [72, 73, 74, 75, 76, 77] and
that of the dipole approach described below.

A much more simplified modeling of the Gribov corrections was performed in [78]. Although this
model is outdated compared to the contemporary state of art in the field, we highlight here several
features of this description of shadowing, because the model is frequently used by experimental groups
analyzing their data. The model exhibits all the problems listed above, and creates even more troubles.

• The lowest order Gribov correction is calculated in [78] in analogy to the vector dominance model
[22]. Namely, the invariant mass distribution of the diffractively produced intermediate states is
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replaced by a delta function, δ(M2 − Q2), reducing the Gribov corrections to a single-channel
problem. On the contrary, the above discussed analyses perform mass integration, Eqs. (16), (62),
in accordance with the measured mass-dependence of the diffractive cross section.

• The cross sections of diffractive processes hp → Xp in (16), or γ∗p → Xp in (62), are well
measured and fitted to data. Instead, in [78] this cross section is fitted to data on shadowing,
which have incomparably lower statistics than in diffraction.

• The falling Q2 dependence of the effective absorption cross section is motivated by the dominant
contribution of heavy intermediate states of mass M2 = Q2, which have smaller cross section.
That is not correct, since the heavy hadrons have larger radius and larger cross section. This is
the basis of the so called Bjorken puzzle [79], which is solved by a nontrivial cancellation between
diagonal and off-diagonal diffractive amplitudes [80].

• Shadowing at large Q2 is known to be dominated by the aligned-jet hadronic components of the
virtual photon [81] (see below Sect. 3.2.3), which lead to a logarithmic, rather than power [78],
Q2-dependence of shadowing [82, 83].

We conclude that this model is oversimplified and has a very low predictive power compared with
other approaches.

3.2 Dipole representation

The problems of Eq. (62) listed above are typical for a description based on the hadronic representation,
since hadrons are the eigenstates of the mass matrix, but they do not have a certain size, controlling the
nuclear transparency [13]. Nevertheless, this description has the advantage of having in Eq. (62) definite
phase shifts, controlled by xIP related to MX . On the other hand, switching to the dipole representation,
one gets certainty with the dipole sizes, but the mass and phase shifts become uncertain. Later on, in
Sect. 3.2.2 we will explain how to deal with the phase shifts within the dipole approach, but here we
start assuming that the energy is high enough to neglect the phase shifts.

The dipole description of [13] was applied to DIS in [84]. The inclusive DIS cross section of a proton
gets the form,

σγ
∗p
T,L(x,Q2) =

1∫
0

dα

∫
d2rT

∣∣∣ΨT,L
qq̄ (α, rT , Q

2)
∣∣∣2 σqq̄(rT , x), (64)

where the ΨT,L
qq̄ (α, rT , Q

2) are the light-cone (LC) wave functions for the transition γ∗ → qq̄. The LC
wave functions can be calculated in perturbation theory and read in first order in the fine structure
constant αem [85, 86, 84],

ΨT,L
q̄q (~rT , α,Q

2) =

√
αem
2π

χ̄ ÔT,L χK0(εrT ), (65)

where χ and χ̄ are the spinors of the quark and antiquark respectively. Here α is the light-cone
momentum of the photon carried by the quark;

ε2 = α(1− α)Q2 +m2
q; (66)

K0(εrT ) is the modified Bessel function. The operators ÔT,L for transversely and longitudinally polarized
photons have the form,

ÔT = mq ~σ · ~e+ i(1− 2α) (~σ · ~n) (~e · ~∇T ) + (~σ × ~e) · ~∇T , (67)

ÔL = 2Qα(1− α)~σ · ~n , (68)
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where the two-dimensional operator ~∇T acts on the transverse coordinate ~rT ; ~n = ~q/q is a unit vector
parallel to the photon momentum; ~e is the polarization vector of the photon.

For the universal total cross section of dipole-proton interaction we rely on the parametrization [87]
fitted to data for the proton structure function F2(x,Q2) measured at high energies (small x) at HERA,

σqq̄(rT , x) = σ0

[
1− exp

(
− r2

TQ
2
0

4(x/x0)λ

)]
, (69)

where Q0 = 1 GeV and the three fitted parameters are σ0 = 23.03 mb, x0 = 0.0003, and λ = 0.288. This
dipole cross section vanishes ∝ r2

T at small distances, as implied by color transparency [13], and levels
off exponentially at large separations, which reminds eikonalization. Although this parameterization
might be unrealistic at large separations (see discussion in [88]), and does not comply with the DGLAP
evolution (see improvements in [89]) we will use it, because of its simplicity, and because DIS and
Drell-Yan (see Sect. 4) data are all available in the kinematical range where (69) works rather well. So
in what follows we employ this parametrization for numerical calculations (unless specified).

3.2.1 Shadowing and the lifetime of q̄q fluctuations of the photon

Nuclear shadowing is controlled by the interplay between two fundamental quantities.

• The lifetime of photon fluctuations, or coherence time. Namely, shadowing is possible only if the
coherence time exceeds the mean inter-nucleon spacing in nuclei, and shadowing saturates (for a
given Fock component) if the coherence time substantially exceeds the nuclear radius.

• Equally important for shadowing is the transverse separation of the q̄q. In order to be shadowed
the q̄q-fluctuation of the photon has to interact with a large cross section. As a result of color
transparency [13, 90, 91], small size dipoles interact only weakly and are therefore less shadowed.
The dominant contribution to shadowing comes from the large aligned jet configurations [92, 93]
of the pair.

The lifetime of a hadronic fluctuation given by Eq. (55) can be presented as

tc =
P

xmN

= P tmaxc , (70)

where P = (1 +M2/Q2)−1, and tmaxc = 1/mN x. The usual approximation is to assume that M2 ≈ Q2

since Q2 is the only large dimensional scale available. In this case P = 1/2.
For a noninteracting q̄q the coefficient P has a simple form,

P (kT , α) =
Q2 α (1− α)

k2
T + ε2

, (71)

where mq and kT are the mass and transverse momentum of the quark respectively. To find the mean
value of the fluctuation lifetime in vacuum one should average (71) over kT and α weighted with the
wave function squared of the fluctuation,

〈P 〉vac =

〈
Ψγ∗

q̄q

∣∣∣P (kT , α)
∣∣∣Ψγ∗

q̄q

〉
〈

Ψγ∗

q̄q

∣∣∣Ψγ∗

q̄q

〉 . (72)

The normalization integral in the denominator of (72) diverges at rT → 0 for transversely polarized
photons, therefore we arrive at the unexpected result 〈P T 〉vac = 0. This means that in vacuum a
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transverse photon fluctuates mainly to heavy q̄q pairs with large kT , which have a vanishingly short
lifetime. However, they also have a vanishing small transverse size rT ∼ 1/kT and interaction cross
section. Therefore, such fluctuation cannot be resolved by the interaction and do not contribute to the
DIS cross section. To get a sensible result one should properly define the averaging procedure. We are
interested in the fluctuations which contribute to nuclear shadowing, i.e. they have to interact at least
twice. Correspondingly, the averaging procedure has to be redefined as,

〈P 〉shad =

〈
fsd(γ

∗ → q̄q)
∣∣∣P (kT , α)

∣∣∣fsd(γ∗ → q̄q)
〉

〈
fsd(γ∗ → q̄q)

∣∣∣fsd(γ∗ → q̄q)
〉 , (73)

where fsd(γ
∗ → q̄q) is the amplitude of diffractive dissociation of the virtual photon on a nucleon

γ∗N → q̄q N .
Thus, one should include in the weight factor for the averaging the interaction cross section squared

σ2
q̄q(rT , s), where s = 2mNν −Q2 +m2

N . Then, the mean value of the function P (α, kT ) reads,

〈
P T,L

〉
=

∫ 1

0
dα
∫
d2r1d

2r2

[
ΨT,L
qq̄ (~r2, α)

]∗
σNqq̄ (r2, s) P̃ (~r2 − ~r1, α) ΨT,L

qq̄ (~r1, α)σNqq̄ (r1, s)∫ 1

0
dα
∫
d2r

∣∣∣ΨT,L
qq̄ (~r,α)σNqq̄ (r, s)

∣∣∣2 (74)

with

P̃ (~r2 − ~r1, α) =

∫
d2kT

(2π)2 exp
(
−i~kT · (~r2 − ~r1)

)
P (α, kT ) =

Q2α (1− α)

2π
K0 (ε |~r2 − ~r1|) , (75)

which is a Fourier transform of Eq. (71).
The results of numerical calculations for 〈P 〉, for transversely and longitudinally polarized photons,

are depicted in Fig. 15 as function of Q2, and in Fig. 16 versus Bjorken x. One can see that 〈PL〉 > 〈P T 〉,
which means that a longitudinal photon produces lighter q̄q fluctuations than a transverse one. This
is related to the suppression of the very asymmetric q̄q pairs with α → 0 or α → 1 in the distribution
amplitude of a longitudinal photon. Such asymmetric pairs have the largest invariant mass.

3.2.2 The path integral technique

As far as the lifetime of partonic fluctuations of a photon significantly exceeds the nuclear size, the dipole
approach is very suitable and easy tool in order to calculate the shadowing effects in DIS. Indeed, in
this case one can rely on the “frozen” approximation Eq. (24), which for interaction of a virtual photon
has the form,

σγ
∗A
T,L (x,Q2) = 2

∫
d2b

1∫
0

dα

∫
d2rT

∣∣∣ΨT,L
qq̄ (α, rT , Q

2)
∣∣∣2 [1− e− 1

2
σqq̄(rT ,x)TA(b)

]
, (76)

where the ΨT,L
qq̄ (α, rT ) are given by Eq. (65), and in the quadratic form read,

∣∣ΨT
qq̄(α, rT )

∣∣2 =
2Ncαem
(2π)2

Nf∑
f=1

Z2
f

{
[1− 2α(1− α)] ε2K2

1(εrT ) +m2
fK

2
0(εrT )

}
, (77)

∣∣ΨL
qq̄(α, rT )

∣∣2 =
8Ncαem
(2π)2

Nf∑
f=1

Z2
fQ

2α2(1− α)2K2
0(εrT ), (78)
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The advantage of the dipole description is clear, Eq. (76) includes Gribov inelastic shadowing cor-
rections to all orders multiple interactions [13], what is hardly possible in the hadronic representation.
On the other hand, the dipoles having a definite size, do not have any definite mass, therefore the
phase shifts between amplitudes on different nucleons cannot be calculated as simple as in Eq. (16). A
solution for this problem was proposed in [16]. If tc ∼< RA the ”frozen approximation is not appropriate
and one should correct for the dipole size fluctuations during propagation through the nucleus. This
can be done with the path integral technique [94], which sums up different propagation paths of the
partons.

For a q̄q component of the photon Eq. (76) should be replaced by,

(
σγ
∗A
tot

)T,L
= A

(
σγ
∗N
tot

)T,L
− 1

2
Re

∫
d2b

1∫
0

dα

∞∫
−∞

dz1

∞∫
z1

dz2

∫
d2r1

∫
d2r2 (79)

×
[
ΨT,L
q̄q (ε, ~r2)

]∗
ρA (b, z2)σNqq̄ (s, ~r2)G (~r2, z2 |~r1, z1) ρA (b, z1)σNqq̄ (s, ~r1) ΨT,L

q̄q (ε, ~r1) ,

The Green’s function G (~r2, z2 |~r1, z1) describes propagation of a q̄q pair in an absorptive medium,
having initial separation ~r1 at the initial position z1, up to the point z2, where it gets separation ~r2, as
is illustrated in Fig. 17. It satisfies the evolution equation,[

i
∂

∂z2

+
∆⊥ (r2)− ε2

2να (1− α)
+ U(r2, z2)

]
G (~r2, z2 |~r1, z1) = iδ (z2 − z1) δ(2) (~r2 − ~r1) . (80)

26



z( , ; , )zrr

−
q

z

** γγ

1 2
z

2
rr

1

q

2 12 1G

Figure 17: Propagation of a qq̄-pair through a
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nates z1 and z2. The evolution of the q̄q separa-
tion from the initial, ~r1, up to the final, ~r2, due to
the transverse motion of the quarks, is described
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Figure 18: Propagation through a nucleus of the
qq̄ − g fluctuation of a longitudinally polarized
photon. Neglecting the small, ∼ 1/Q2 size of
the color-octet q̄q pair, the effective octet-octet
dipole propagation is described by the Green’s
function Ggg(~r2g, z2;~r1g, z1).

The light-cone potential term in the left-hand side (l.h.s.) of this equation describes nonperturbative
interactions within the dipole, and its absorption in the medium. The real part the potential responsible
for nonperturbative quark interactions was modeled and fitted to data of F p

2 in [88]. Here we fix
ReU(r2, z2) = 0, and treat quarks as free particles for the sake of simplicity. The imaginary part of the
potential describes the attenuation of the dipole in the medium,

ImU(r, z) = −1

2
σq̄q(r) ρA(b, z). (81)

At small x when the coherence length substantially exceeds, lT,Lc � (z2−z1) (the nuclear radius) the
solution of Eq. (80) much simplifies, G(~r2, z2 |~r1, z1) ∝ δ(2) (~r2 − ~r1), so Lorentz time dilation “freezes”
the variation of transverse q̄q separation. Correspondingly, the total cross section gets the simple form
of Eq. (76).

Eq. (80) can be solved analytically if the medium density is constant, ρA = ρ0, and then the dipole
cross section has the simple form, σqq̄(r) = Cr2. The solution is the harmonic oscillator Green function
with a complex frequency [15],

G (~r2, z2;~r1, z1) =
γ

2π sinh (ω∆z)
exp

{
−γ

2

[(
r2

2 + r2
1

)
coth (ω∆z)− 2~r2 · ~r1

sinh (ω∆z)

]}
, (82)

where

∆z = z2 − z1, (83)

ω2 =
i Cρ0

να (1− α)
, (84)

γ2 = −i Cρ0να (1− α) . (85)

This formal solution and Eq. (80) properly account for all multiple scatterings and for the finite lifetime
of the hadronic fluctuations of the photon, as well as varying transverse separation of the qq̄ pair during
propagation through the medium. It effectively sums up all the Gribov corrections including nonzero
phase shifts between different amplitudes.

For practical applications these results can be extended to a realistic nuclear density varying with
coordinates as is described in [15]. Also the real part of the light-cone potential U(r, z) in (80) was
modeled in [88, 17] to incorporate nonperturbative effects.

The best data available today for nuclear shadowing in DIS are for the structure function ratio tin
over carbon from NMC [95]. These data are shown in Figs. 19 and 20 as function of Bjorken x and
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Figure 19: The Bjorken-x dependence of nuclear
shadowing in DIS for the structure function ra-
tio of tin relative to carbon. The data are from
the NMC experiment [95]. The solid and dashed
curves are calculated including or excluding the
nonperturbative effects respectively.
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Figure 20: The Q2 dependence of nuclear shad-
owing in DIS for the ratio of the structure func-
tions of tin to carbon. The data [95] are the same
as shown in fig. 19, and the curves have the same
meaning.

Q2 respectively. The numerical results of the calculations, which are performed either disregarding or
including the nonperturbative effects, are plotted in Fig. 19 by dashed and solid curves respectively.
One can see that inclusion of the nonperturbative effects does not lead to a significant change of the
magnitude of shadowing. Comparison with NMC data [95, 96] shows pretty good agreement. Note
however that inclusion of the antishadowing effect might shift the curves upwards. Indeed, the low-x
tail of the EMC suppression observed at at large x should be an enhancement, as is suggested by the
momentum conservation sum rule. Whether this will happen at all values of x or only around x ∼ 0.1,
depends on the model.

As an example of the A dependence of shadowing, the numerical results for the ratios of various
nuclei to carbon are depicted in Fig. 21, in comparison with NMC data [95, 96]. Calculations including
no interaction within the q̄q pair are shown by dashed curves. The calculations are parameter free and
agree with data rather well. Introduction of a nonperturbative interaction between q and q̄ described
by the real part of the light-cone potential ReU(r, z), parametrized in the oscillator form (see details
in [88, 17]), does not produce any significant change. These results, plotted in Fig. 21 by solid curves,
also agree with the data.

We also compare our calculations with data from the E665 experiment [97, 98], which covered much
lower values of x, Fig. 22. The agreement with E665 data is not as good as with the NMC data. Indeed,
the two datasets seem to be somewhat inconsistent [95, 41], so it looks challenging to reproduce both.

The disagreement between NMC and E665 vanishes however, in the F2 ratio relative to carbon.
This observation might give a clue to the origin of the “disagreement” between the results of the two
experiment. The modification of the properties of bound nucleons compared with free ones is a popular
interpretation of the EMC effect, which is the observed suppression of nuclear F2(x,Q2) at large x. This
effect should propagate down to small x as an enhancement (momentum conservation sum rule), which
is indeed observed at x ∼ 0.1 − 0.2. Such a few percent enhancement should have similar magnitudes
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Figure 21: Comparison between calculations for
shadowing in DIS and experimental data from
NMC [95, 96] for the structure functions of dif-
ferent nuclei relative to carbon. Q2 ranges within
3 ≤ Q2 ≤ 17 GeV2. The curves have the same
meaning as in Fig. 19
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Figure 22: E665 data for shadowing in DIS for
various nuclei [97, 98]. Full circles show data
taken with electromagnetic calorimeter cuts,
while the open circles result from the FERRAD
radiative correction code. Hadronic cuts were ap-
plied for the triangles in the lower left plot. Q2

ranges within 0.15 ≤ Q2 ≤ 22.5 GeV2, except
for the xenon data, 0.03 ≤ Q2 ≤ 17.9 GeV2. The
curves have the same meaning as in Fig. 19.

for carbon and heavier nuclei, because the nuclear density does not vary much. However for deuterons
the EMC effect and related small-x enhancement are much weaker. Therefore the ratios A/D should
be shifted by few percent upwards compared with A/C ratios. This is what happens and can be seen
in Figs. 21 and 22. Our calculations of shadowing have not been corrected for the EMC effect of
antishadowing, and this is probably why they agree with the NMC data for A/C but underestimate
the E665 data for A/D.

Notice that the measurement of nuclear shadowing in inclusive DIS, where only the final lepton is
detected, is a very difficult task because of large radiative corrections [99]. These corrections occur,
e.g. when the incident lepton reduces its momentum due to electromagnetic bremsstrahlung and does
not produce a deep inelastic event [100]. In the older publications [59, 101], the NMC collaboration
calculated the radiative corrections employing the computer program FERRAD, which relies on the
theoretical analysis [102]. For a reevaluation of the shadowing data [96] three different codes were
tested, FERRAD, an improved version of FERRAD and TERAD. The last code relies on calculations
[103, 104, 105] and was used for the published NMC result. A more detailed discussion on radiative
corrections for NMC and HERMES can be found in [106]. One may say that the whole shadowing
effect in data is calculated. Without radiative corrections, the cross section ratio would be around unity
[106]. However, the correctness of the calculation was checked by comparing to the ”hadron tagged”
data, making sure that really a deep inelastic event was measured.

A different way to identify the deep inelastic events was chosen by the E665 collaboration [97, 98],
where cuts in the electromagnetic calorimeter were applied. In [97] the xenon data obtained in this way
were compared to an evaluation with hadron tagging, see Fig. 22. The two methods give consistent
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results. In [98], the E665 collaboration also applied the FERRAD code for a comparison with NMC.
The results are depicted by open circles in Fig. 22. One recognizes a systematic discrepancy between
the two evaluation methods. The radiative corrected ratios are lower by ∼5% than the points from the
calorimeter analysis.

3.2.3 Shadowing of longitudinal vs transverse photons

Eqs. (64) and (80) allow to calculate the absolute values of σL and σT , as well as the magnitude of
nuclear shadowing for each of them. The results for Rp

L/T = σpL/σ
p
T calculated at x = 0.01 are plotted

as function of Q2 in Fig. 23. The solid and dashed curves, like previously, correspond to calculations
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Figure 23: Ratio Rp
L/T on a proton as function of

Q2 calculated with Eqs. (76)-(78). For the curve
notations see Fig. 19. The NMC data [107] are
from the left to the right for x = 0.0080, 0.0045,
0.0125, 0.0175, 0.025, 0.035, 0.05, 0.07, and 0.09.

Figure 24: Ratio of longitudinal to transverse
cross sections RL/T = σL/σT calculated for nitro-
gen 14N divided by the same ratio for a proton,
R

14N
L/T/R

p
L/T . For the curve notations see Fig. 19.

with or without inclusion of the nonperturbative effects in the q̄q distribution amplitude of the photon.
Theory agrees well with NMC data [107] measured at close values of Bjorken x.

The ratio turns out to be quite small, Rp
L/T ∼< 0.2. This is understandable intuitively as a result

of a smaller transverse size of q̄q fluctuations in longitudinally polarized photons. Indeed, the mean
transverse separation squared,

〈r2
T 〉 =

1

Q2 α(1− α) +m2
q

, (86)

is minimal for the symmetric fluctuations, α ∼ 1/2, but reach the maximal size of the order of the
confinement radius for very asymmetric pairs at α→ 0, 1. The latter configurations are suppressed by
the distribution function of longitudinal photons, Eq. (78), so the q̄q fluctuations are more symmetric,
i.e. have smaller size, while fluctuations of transverse photons get a considerable distribution from
asymmetric, large size fluctuations.

This observation has important consequences for the relation Eq. (46) connecting the shadowing
effects in the nuclear structure function FA

2 and nuclear DIS cross section σlADIS. The observed nuclear
ratio (1) for the DIS cross section equals to that for the structure functions F2 only if (i) either RL/T � 1
and can be neglected in (46); (ii) or ξ = 1; (iii) or RL/T has no nuclear dependence, RA

L/T = RN
L/T .

Regarding the condition (i), indeed Rp
L/T is rather small, but not that small to neglect it in (46).

Regarding (ii), the value of ξ, according to (47), at small x is mainly controlled by the transferred
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fractional energy y = ν/El. Apparently, at the same of x and Q2 the value of ν is also the same in
high-energy (NMC, E665) and low-energy (JLAB, HERMES) experiments. Therefore the values of y
and ξ are very different. The low-energy experiments at small x ∼ 0.1 are mainly done with large
y → 1, i.e. small ξ � 1, while at high energies y � 1 and ξ ∼ 1. In the latter case, according to (46)
one can safely treat the ratio of the DIS cross sections as that for F2.

However, at smallest x even in large energy experiments the transferred fractional energy reaches
large values, so ξ is small, and one should have a look at the A-dependence of RA

L/T . This ratio was

calculated in [17] for nitrogen 14N and hydrogen at x = 0.01, and the ratio of the results R
14N
L/T/R

p
L/T

is plotted in Fig. 24 as function of Q2. We see that the difference between RL/T on 14N and p ranges
within about 10%. This correction is diluted by the small value of RL/T ≈ 0.2 down to about 2% even
in the case of ξ → 0 where the nuclear corrections are maximal.

Notice that the weak nuclear dependence of RL/T predicted in [17], was at the time of publication
in dramatic disagreement with HERMES data [108], which showed a nuclear enhancement of RL/T by
a factor of several. However, few years later the HERMES Collaboration discovered a mistake in their
measurements [109].

3.2.4 Nuclear shadowing for valence quarks

Nuclear shadowing for valence quarks is usually believed to be small [110], if it occurs at all. It was
demonstrated in [111], however, that shadowing for valence quarks is quite sizable, even might be
stronger than the shadowing of sea quarks. Notice in this regard that the nuclear structure function
F2(x) is different from the quark distribution function in an essential way; namely, the former contains
shadowing effects and therefore the baryon number sum rule is not applicable to it [112], a difference
that might explain the discrepancy of present results compared to Ref. [110].

Note that we relate the nuclear cross section Eq. (76) to shadowing for sea quarks because the
dipole cross section σNqq̄(rT , x) was fitted to HERA data at very low x < 0.01, so it includes only
the part corresponding to gluonic exchanges in the cross-channel. Therefore, this is the part of the
sea generated via gluons (there are also other sources of the sea, for instance the meson cloud of the
nucleon, but they steeply vanish with x). The fact that the color-dipole cross section includes only the
part generated by gluons is the reason why it should not be used at larger x. This part of the dipole
cross section can be called the Pomeron in terms of Regge phenomenology. In the same framework, one
can relate the valence quark distribution in the proton to the Reggeon part of the dipole cross section,
which has been neglected so far. So, to include valence quarks in the dipole formulation of DIS, one
should replace

σqq̄(rT , x)⇒ σIPqq̄(rT , x) + σIRqq̄(rT , x) , (87)

where the first (Pomeron) term corresponds to the gluonic part of the cross section, responsible for
the sea quarks in the nucleon structure function. The second (Reggeon) term must reproduce the
distribution of valence quarks in the nucleon; this condition constraints its behavior at small x. One
can guess that it has the following form,

σIRqq̄(rT , x) = Ñ r2
T

√
x , (88)

where
√
x should reproduce the known x dependence of valence quark distribution (as, in fact, motivated

by Regge phenomenology), and the factor r2
T is needed to respect the Bjorken scaling. The factor Ñ

will cancel in what follows.

We are now in a position to calculate shadowing for valence quarks by inserting the cross section
Eq. (87) into the eikonal expression Eq. (76). If one expands the numerator in powers of σIRqq̄ and picks
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out the linear term3, then one arrives at the following expression for nuclear shadowing of the valence
quarks,

Rv(x,Q
2) =

∫
d2b TA(b)

∫ 1

0
dα
∫
d2rT

∣∣∣Ψqq̄(rT , α,Q
2)
∣∣∣2σIRqq̄(rT , x) e−

1
2
σIPqq̄(rT ,x)TA(b)

A
∫ 1

0
dα
∫
d2rT

∣∣∣Ψqq̄(rT , α,Q2)
∣∣∣2 σIRqq̄(rT , x)

. (89)

The results of numerical calculations with this expression are compared with the results of the global
fit [110] in Fig. 25. We see that shadowing for valence quarks is stronger than for sea quarks, and is
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Figure 25: Shadowing for sea and
valence u-quarks in DIS off gold at
Q2 = 20 GeV2. Solid lines are cal-
culated from Eq. (89), while dashed
curves show the EKS98 parameter-
ization [110].

much stronger than in the parameterization of [110]. Note that the global fit of [110] assumes that
the nuclear valence quark distribution has to satisfy the baryon number sum rule, which takes it for
granted that the structure function is a measure of the number of quarks in the target. However, the
very meaning of shadowing is a reduced access of the probe (the virtual photon) to some of the bound
nucleons. So the reduction of the effective number of valence quarks in the target, does not mean that
baryon number is not conserved, it only shows that the probe is not sufficiently hard. Increasing Q2

one does not get rid of the soft component of DIS [58].

Unfortunately, it will be impossible to extract the low-x valence quark distribution of a nucleus from
DY experiments, because the nuclear structure function is dominated by sea quarks. Maybe neutrino-
nucleus scattering experiments and accurate measurement of shadowing for F νN

3 + F ν̄N
3 (see Sect. 5)

can provide information on shadowing of valence quarks.

3.2.5 “Antishadowing”

Shadowing is a quantum-mechanical phenomenon, which is impossible for hard reactions in classical
physics, since multiple interactions have too small cross sections to shadow each other. Only if a hadronic
quantum fluctuation has a sufficiently long lifetime to undergo multiple interactions (at least twice), can
two amplitudes on two different nucleons interfere, either destructively (shadowing), or constructively
(antishadowing). This is why the term antishadowing is labelled by quotation marks in the title of this
section, because this small enhancement of the nuclear ratio FA

2 (x,Q2)/FN
2 (x,Q2), which was observed

[113] at x ∼ 0.1 − 0.2, is well outside of the coherence region. Therefore no coherence phenomena,
either shadowing, or antishadowing are possible. Indeed, the fluctuation lifetime given by the Ioffe
time, Eq. (55), for this x-interval is very short 0.5 − 1 fm compared to the mean nucleon spacing in

3The small size of σIR
qq̄(rT , x) at small x motivates such an expansion; however, one should note that it would not be

proper to include the higher powers of the Reggeon cross section. Indeed, the Reggeons correspond to planar graphs.
These cannot be eikonalized since they lead to the so-called AFS (Amati-Fubini-Stangelini) planar graphs, which vanish
at high energies [4].

32



nuclei, ∼ 2 fm. Although the observed nuclear enhancement cannot be related to antishadowing, this
terminology is widely adopted so we will use it.

No consensus has been reached so far regarding the mechanisms responsible for this effect, as well
as for the EMC effect, which is a nuclear suppression at larger x ∼ 0.2 − 0.7 [113]. As far as both of
these collective effects cannot be caused by coherence, they may be only related to a modification of
the bound nucleons compared with free ones. This subject goes far beyond the scope of the present
paper focused on coherence phenomena, but a detailed discussion of the medium effects can be found
in the comprehensive review [114]. However, those effects might propagate down to smaller x and also
contribute to the observed nuclear suppression, therefore we briefly discuss here possible implications
at small x.

Suppression of the quark PDF of a medium-modified bound nucleon at large x, should cause an
enhancement at smaller x due to the baryon number (number of valence quarks) conservation sum
rule. This enhancement would propagate down to small x, however shadowing onsets at x . 0.1 and
overtakes the enhancement. In this qualitative picture the nuclear enhancement observed in the interval
0.1 . x . 0.2 is a result of the interplay of two phenomena, which have quite different origin. One, the
EMC effect, has no relation to coherence, and results from medium modification of the properties of
bound nucleons. Another, the shadowing suppression, is caused by destructive interference of the DIS
amplitudes on different bound nucleons, regardless whether these nucleons are, or are not modified by
the medium. A quantitative analysis based on the model of ”swelling nucleons” was performed in [115]
in good agreement with data.

3.2.6 Coherence time for gluon radiation and gluon shadowing

Shadowing in the nuclear gluon distributing function at small x, which looks like gluon fusion gg → g
in the infinite momentum frame of the nucleus, should be treated in the rest frame of the nucleus as
shadowing for the Fock components of the photon containing gluons. Indeed, the first shadowing term
contains double scattering of the projectile gluon via exchange of two t-channel gluons, which is the
same Feynman graph as gluon fusion. Besides, both of them correspond to the triple-Pomeron term in
diffraction which controls shadowing (see Eq. (61) and Fig. 13).

The lowest Fock component containing a gluon is the |q̄qg〉. The coherence time controlling shad-
owing depends on the effective mass of the |q̄qg〉, which should be expected to be heavier than that for
a |q̄q〉. Correspondingly, the coherence time 〈tgc〉 should be shorter and the onset of gluon shadowing is
expected to start at smaller x.

For the coherence time one can rely on the same Eq. (55), but with the invariant mass of the
fluctuation,

M2
q̄qg =

k2
T

αg(1− αg)
+

M2
q̄q

1− αg
, (90)

where αg is the fraction of the photon momentum carried by the gluon, and Mq̄q is the effective mass of
the q̄q pair. This formula is, however, valid only in the perturbative limit. It is apparently affected by
the nonperturbative interaction of gluons, which was found in [88] to be much stronger than that for a
q̄q. Since this interaction may substantially modify the effective mass Mq̄qg, we switch to the formalism
of Green’s function described above, which recovers Eq. (90) in the limit of high Q2.

We treat gluons as massless and transverse. For the factor P defined in (70), in the case of gluon
shadowing one can write, 〈

P g
〉

=
N g

Dg
, (91)

where

N g = mN x

∫
d2r1g d

2r1qq̄ d
2r2g d

2r2qq̄ dαq d ln(αg) Ψ̃†q̄qg (~r2g, ~r2qq̄, αq, αg)
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×

 ∞∫
z1

dz2Gq̄qg (~r2G, ~r2qq̄, z2;~r1g, ~r1qq̄, z1)

 Ψ̃q̄qg (~r1g, ~r1qq̄, αq, αg) (92)

Dg =

∫
d2r1g d

2r1qq̄ d
2r2g d

2r2qq̄ dαq d ln(αg) Ψ̃†q̄qg (~r2g, ~r2qq̄, αq, αg)

× δ(2) (~r2g − ~r1g) δ
(2) (~r2qq̄ − ~r1qq̄) Ψ̃q̄qg (~r1g, ~r1qq̄, αq, αg) (93)

Here we have introduced the Jacobi variables, ~rqq̄ = ~Rq̄ − ~Rq and ~rg = ~Rg − (αq̄ ~Rq̄ + αq ~Rq)/(αq̄ + αq).
~Rg,q,q̄ are the position vectors of the gluon, the quark and the antiquark in the transverse plane and
αg,q,q̄ are the longitudinal momentum fractions.

Differently from the case of a |q̄q〉 Fock state, where we found that at high Q2 perturbative QCD
can be safely used for shadowing calculations, the nonperturbative effects remain important for the
|q̄ q g〉 component even for highly virtual photons. High Q2 squeezes the q̄q pair down to a size ∼ 1/Q,
while the mean quark-gluon separation at αg � 1 depends on the strength of gluon interaction which
is characterized in this limit by the parameter b0 ≈ 0.65 GeV [88]. The presence of such a semi-hard
scale, which considerably exceeds ΛQCD, is confirmed by various experimental observations [116], in
particular by the observed strong suppression of the diffractive gluon radiation [88]. In nonperturvative
QCD models this scale is related to the instanton size [117, 118], r0 ∼ 1/b0 ≈ 0.3 fm.

For Q2 � b2
0 the q̄q is small, r2

q̄q � r2
g , and one can treat the q̄qg system as a color octet-octet dipole,

as is illustrated in Fig. 18. Then the three-body Green’s function Gqq̄g factorizes,

Gqq̄g (~r2g, ~r2qq̄, z2;~r1g, ~r1qq̄, z1) ⇒ Gqq̄ (~r2qq̄, z2;~r1qq̄, z1) Ggg (~r2g, z2;~r1g, z1) . (94)

The color octet-octet Green’s function Ggg, describing the propagation of a glue-glue dipole through
the medium, satisfies the simplified evolution equation [88],[

∂

∂z2

− Q2

2ν
+

∆⊥ (r2g)

2ναg (1− αg)
−

b4
0 r

2
2g

2ναg (1− αg)

]
Ggg (~r2g, z2;~r1g, z1) = δ (z2 − z1) δ(2) (~r2g − ~r1g) (95)

Correspondingly, the modified q̄qg wave function simplifies too,

Ψ̃q̄qg (~rg, ~rqq̄, αq, αg)⇒ −ΨL
q̄q (~rqq̄, αq) ~rg · ~∇Ψqg (~rg) σNgg (x, rg) , (96)

where the nonperturbative quark-gluon wave function has a form [88],

Ψqg (~rg) = lim
αg→0

Ψqg (αg, rg) = −2i

π

√
αs
3

~e · ~rg
r2
g

exp

(
−b

2
0

2
r2
g

)
, (97)

and the color-octet dipole cross section reads,

σNgg (x, rg) =
9

4
σNqq̄ (x, rg) . (98)

Within these approximations we can evaluate the factor 〈PG〉 = 〈lgc 〉/lmaxc given by Eq. (91). The
results are depicted in Figs. 15 and 16. With the approximations made above, the calculations cannot
cover the low Q2 region and are perform at Q2 > 1 GeV2. The gluon coherence length turns out to be
much shorter than both lTc and lLc for |q̄q〉 fluctuations. This observation corresponds to delayed onset
of gluon shadowing, shifted to smaller x compared with quark shadowing, as was predicted in [88].

Although gluon shadowing is related to the higher Fock component of the photon, γ∗ → q̄qg,
shadowing might be related also to a large q̄q separation, or g − q̄q. The former is related to quark
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shadowing, which is a higher twist effect, but even increasing Q2 one cannot get rid of this contribution.
As was demonstrated above, the main contribution to shadowing of transversely polarized photons
comes from very asymmetric sharing of light-cone momentum, α ∼ m2

q/Q
2. To get a net effect of

gluon shadowing one should suppress this term by taking either heavy flavors [119, 120], or DIS with
longitudinally polarized photons [88]. Here we rely on the latter.

Longitudinal photons can serve to measure the gluon density because they effectively couple to
color-octet-octet dipoles. This can be understood in the following way: the light-cone wave function
for the transition γ∗L → qq̄ does not allow for large, aligned jet configurations [86]. Thus, unlike the
transverse case, all qq̄ dipoles from longitudinal photons have size 1/Q2 and the double-scattering term
vanishes like ∝ 1/Q4. The leading-twist contribution for the shadowing of longitudinal photons arises
from the |qq̄g〉 Fock state of the photon. Here again, the distance between the q and the q̄ is of order
1/Q2, but the gluon can propagate relatively far from the qq̄-pair. In addition, after the emission of the
gluon, the pair is in an octet state. Therefore, the entire |qq̄g〉-system appears as a gg-dipole, and the
shadowing correction to the longitudinal cross section is just the gluon shadowing we want to calculate.

One can also see that from the expression for the cross section of a small size dipole [93, 121],

σA,Nq̄q (rT , x) ≈ π2

3
αs(Q

2)x gN(x,Q2) , (99)

where gN(x,Q2) is the gluon density at Q2 ∼ 1/r2
T . Thus, we expect nearly the same nuclear shadowing

at large Q2 for the longitudinal photoabsorption cross section and for the gluon distribution,

σLA(x,Q2)

σLN(x,Q2)
≈ gA(x,Q2)

gN(x,Q2)
(100)

The shadowing correction to σLA(x,Q2) has the form (compare with (80)),

∆σLA(x,Q2) = − Re

∫
d2b

∞∫
−∞

dz1

∞∫
z1

dz2 ρA(b, z1)ρA(b, z2)

∫
d2r2g d

2r2q̄q d
2r1g d

2r1q̄q

∫
dαq dln(αg)

× F †γ∗→q̄qg(~r2g, ~r2q̄q, αq, αg)Gq̄qg(~r2g, ~r2q̄q, z2;~r1g, ~r1q̄q, z1)Fγ∗→q̄qg(~r1g, ~r1q̄q, αq, αg) (101)

Assuming Q2 � b2
0 we can neglect rq̄q � rg. The net diffractive amplitude Fγ∗→q̄qg(~r1g, ~r1q̄q, αq, αg) takes

the form of Eq. (96), and we can rely on the factorized relation (94) for the 3-body Green’s function,
with equation (95) for the evolution of the gluonic dipole. The latter has the solution,

Ggg(~r2g, z2;~r1g, z1) =
Γ

2π sinh(Ω ∆z)
exp

{
−Γ

2

[
(r2

1g + r2
2g) coth(Ω ∆z)− 2~r1g · ~r2g

sinh(Ω ∆z)

]}
, (102)

where

Γ =
√
b0

4 − i αg(1− αg) ν Cgg ρ0

Ω =
iΓ

αg(1− αg) ν
, (103)

and other notations are the same as in Eq. (82), except Cgg = 9
4
C according to (98).

The results of numerical calculation of (101) for the ratio

Rg(x,Q
2) =

gA(x,Q2)

AgN(x,Q2)
, (104)

are depicted in Fig. 26 as function of Bjorken x for Q2 = 4 and 40 GeV2.

35



Figure 26: Ratio of the gluon distribution func-
tions in nuclei (carbon, copper and lead) and nu-
cleons at small Bjorken x and Q2 = 4 GeV2 (solid
curves) and 40 GeV2 (dashed curves).
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Figure 27: Gluon shadowing vs. the length of the
nuclear medium L = 2
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A − b2. All curves are

for Q2 = 20 GeV2 but for different values of x.

Our results for gluon shadowing as a function of the length of the nuclear medium at impact
parameter b are shown in Fig. 27. The calculations are performed for lead with a uniform nuclear
density of ρA = 0.16 fm−3. The small size of the gg dipole leads to a rather weak gluon shadowing.
For most values of x, gluon shadowing increases as a function of L as one would expect. At the largest
value of x = 0.01, however, gluon shadowing becomes smaller as L increases, and Rg approaches 1.
Although this behavior seems to be counterintuitive, it can be easily understood by noting that at
x = 0.01 the coherence length of the |qq̄g〉-Fock state becomes very small and the form factor of the
nucleus suppresses shadowing [17].

4 Drell-Yan process

The Drell-Yan (DY) process,

h1 + h2 → l̄l +X, (105)

in the kinematical region where the invariant dilepton mass M is small compared to the center of mass
energy

√
s is of similar theoretical interest as DIS at low Bjorken x. Moreover, the cross sections of these

processes are related by the factorization theorem [55]. In contrast to DIS, where only the total cross
section can be measured, there is a variety of observables which can be measured in the DY process,
such as the transverse momentum distribution or the angular distribution of the lepton pair.

The fractional light cone momenta of the dilepton relative the colliding hadrons,

x1 =
p+
l̄l

p+
h1

; x2 =
p−
l̄l

p−h2

, (106)

satisfy the relations

x1x2 =
M2 + p2

T

s
;

x1 − x2 = xF , (107)
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where M is the dilepton invariant mass, and xF is the Feynman variable.
Within the collinear approximation of the lowest order parton model pT = 0, and the fractional

light-cone momenta Eq. (107) coincide with the standard Bjorken x1,2 of the q and q̄ annihilating into
the heavy dilepton, q̄q → l̄l. In this lowest order approximation the cross section of the process (105)
is expressed in terms of quark and antiquark densities,

dσ

dτ
=

4πα2
em

3NcM2

∫ 1

0

dx1

∑
f

Z2
f {qf (x1)q̄f (τ/x1) + (1↔ 2)} . (108)

Here τ = M2/s, and the factor Nc (number of colors) appears in the denominator, because quark and
antiquark must have the same color in order to annihilate.

Some features of dilepton production cannot be understood in the lowest order approximation.

• Cross sections calculated straightforwardly from (108) are too small by a factor of 2−3 compared
to the measured value. This discrepancy is usually treated by the introducing of a so called
K-factor. The K-factor is approximately independent of M2, but it is process dependent.

• Dileptons with large transverse momenta, of the order of few GeV, are observed in experiment.
There are however no transverse momenta in the naive parton model, which treats the process
in the collinear approximation, Eq. (108). Phenomenologically, one can introduce a primordial
momentum distribution of the quarks. However, the width necessary to describe data is much
larger than what one would expect from Fermi motion of the quarks.

These problems can be settled by taking into account the first order QCD corrections. Due to the
radiation of the gluon, the quark acquires a transverse momentum. In this way, the pQCD corrections
provides the missing mechanism for the production of lepton pairs with large transverse momentum pT
[122, 123, 124].

The next-to-leading (NLO) correction solves most of the problems of the naive parton model. It
explains how large pT -dileptons are produced and account for almost all of the K-factor [125]. Yet,
not all the problems are settled by this correction. Since it is numerically large, one has to investigate
how much higher order corrections affect the result. Furthermore, the transverse momentum spectrum
is not well described even qualitatively. The theoretical result agrees with data only at p2

T ∼ M2, and
even diverges at pT → 0: dσ/dp2

T ∝ p−4
T , while the observed cross section is of course finite. The reason

for this behavior is that large logarithms ln(M2/p2
T ) occur in higher order corrections and one has to

re-sum all these terms. This is possible within pQCD [126, 127, 128], by a re-summing soft gluons
radiated from the quark or the antiquark.

4.1 Dipole description of heavy dilepton production

Although cross sections and all observables are Lorentz invariant, the partonic interpretation of the
process depends on the reference frame. We have seen this in the case of DIS, and similar considerations
can be made for DY. It was pointed out in [129] that in the target rest frame, DY dilepton production
looks like bremsstrahlung, rather than parton annihilation. A quark (or an antiquark) from the projectile
hadron radiates a virtual photon on impact on the target, as is illustrated in Fig. 28. The radiation can
occur before (not shown) or after the quark scatters off the target. The sum of the two contributions
gets the form in impact parameter representation similar to the dipole interaction in DIS. Such a dipole
description of the DY process was proposed in [129] and developed in many publications including
[131, 132, 133, 111, 134].

The cross section for radiation of a virtual photon from a quark after scattering on a proton, can be
written in factorized light-cone form,

dσ(qp→ γ∗X)

d lnα
=

∫
d2ρ |ΨT,L

γ∗q(α, ρ)|2σqq̄(x2, αρ), (109)
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Figure 28: Feynman diagrams squared for the
cross section of di-lepton production in a q-N
collision. In the target rest frame the quark (or
antiquark) scatters off the target color field and
radiates a massive photon, which decays into the
lepton pair. The photon can be radiated before
or after the quark hits the target. G(x) = xg(x)
is the gluon distribution function in the proton.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

xF=0.625

M / GeV

 M
3 d2 σ/

dx
F 

dM
 in

 n
b 

G
eV

2

Figure 29: Data from E772 [130] and solid curves
are for the DY cross section in pD collisions at√
s = 38.8 GeV, dashed curves are for

√
s =

500 GeV. For each energy, the upper and lower
curves correspond to massless quarks, or mf =
200 MeV.

similar to the case of DIS. Here, σqq̄ is the dipole-proton cross section, which depends on the qq̄ separation
αρ, where ρ is the photon-quark transverse separation and α is the fraction of the light-cone momentum
of the initial quark taken away by the photon. In (109) T and L stand for radiation of transverse and
longitudinal photons respectively.

An interesting feature of (109) is the appearance of the dipole cross section, although there is no
physical qq̄-dipole in Fig. 28. The physical interpretation of (109) is similar to DIS. The projectile quark
is expanded in the interaction eigenstates. We keep only the first two,

|q〉 =
√
Z2|qbare〉+ ΨT,L

γ∗q |qγ∗〉+ . . . , (110)

where Z2 is the wave function renormalization constant for fermions. In order to produce a new state the
interaction must resolve between the two Fock states, i.e. they have to interact differently. Since only
the bare quarks interact in both Fock components the difference arises from the relative displacement in
transverse plane of the quark radiating the photon. If ρ is the transverse separation between the quark
and the photon, the γ∗q fluctuation has a center of gravity in the transverse plane which coincides with
the impact parameter of the parent quark. The transverse separation between the photon and the center
of gravity is (1− α)ρ and the distance between the quark and the center of gravity is correspondingly
αρ. A displacement in coordinate space corresponds to a relative phase factor in momentum space,
− exp(iα~ρ · ~k⊥), which produces the color screening factor exactly like in the dipole cross section.

The LC distribution functions for the |qγ∗〉 component can be written in a form similar to DIS,

ΨT,L
γ∗q(α, ~ρ) =

√
αem
2π

(
χ̄qÔT,Lγ∗qχq

)
K0(ηρ), (111)

where χ are two component spinors, and

η2 = m2
fα

2 +M2 (1− α) . (112)

The operators ÔT,Lγ∗q [131] look similar to, but are different from the analogous operators Eqs. (67) and
(68) in the case of DIS,

ÔTγ∗q = imfα
2~e · (~n× ~σ)− i(2− α)(~e · ~∇ρ) + α~e · (~σ × ~∇ρ),

ÔLγ∗q = 2M(1− α). (113)
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The two dimensional gradient ~∇ρ acts on the transverse coordinate ~ρ; ~n is the unit vector parallel to the
momentum of the projectile quark; and ~σ are the Pauli spin-matrices. The LC distribution functions
for the transition q → γ∗q read explicitly, for a given flavor of unit charge

|Ψγ∗q(α, ρ)|2 = |ΨT
γ∗q(α, ρ)|2 + |ΨL

γ∗q(α, ρ)|2, (114)

|ΨT
γ∗q(α, ρ)|2 =

αem
π2

{
m2
fα

4K2
0 (ηρ) +

[
1 + (1− α)2] η2K2

1 (ηρ)
}
, (115)

|ΨL
γ∗q(α, ρ)|2 =

2αem
π2

M2 (1− α)2 K2
0 (ηρ) . (116)

Comparing (115) and (116) with their DIS counterparts (77) and (78) shows that the factor Nc is no
longer present in the q → γ∗q LC wavefunctions. This is due to the Nc in the denominator of (108).
Furthermore, we see that |ΨT

γ∗q(α, ρ)|2 has an extra factor of 2, because in the DY process, one has to
sum over the transverse polarizations of the photon, rather than average, as in DIS.

Eventually, we are in a position to calculate the DY cross section in hadron-proton collisions, relying
on the elementary cross section Eq. (109). According to the definition (106) the photon carries away
the LC momentum fraction x1 from the projectile hadron, therefore the hadronic cross section reads,

dσ(hN → γ∗X)

dM2dxF
=

αem
3πM2

x1

x1 + x2

1∫
x1

dα

α2

∑
f

Z2
f

{
qf

(x1

α

)
+ qf̄

(x1

α

)} dσ(qN → γ∗X)

d lnα

=
αem

3πM2

1

x1 + x2

1∫
x1

dα

α
F h

2

(x1

α

) dσ(qN → γ∗X)

d lnα
, (117)

Employing in (109) the universal dipole cross section in the parametrization [87], which we have
already used in DIS, one can perform a numerical evaluation in a parameter free way. As an example,
we compare in Fig. 29 the results of numerical evaluation of the DY cross section, plotted by solid
curves, with data from the E772 experiment [130] at

√
s = 38 GeV. To show the sensitivity to the

quark mass in (112) the calculation was done with mf = 0 (upper curve) and mf = 200 MeV (lower
curve). The dashed curves show predictions for the energy of RHIC

√
s = 500 GeV.

Remarkably, the parameter free calculations explain well the observed cross section without any
adjustment, and without any K-factor. This is the advantage of the dipole approach: the phenomeno-
logical dipole cross section is fitted to DIS data, l + p → l′ + X, at small Bjorken x which include all
higher order effects, all possible gluon radiation. Therefore, one should not try to add to the above
results higher order corrections, which would be double counting. This approach is also an alternative
to the twist decomposition, since all higher twist effects are included by default. A numerical test of
the dipole approach for Drell-Yan reaction vs NLO parton model calculations was performed in [135],
and no visible deviation was found.

As we already noticed, the DY process provides more observables than DIS, in particular the di-
leptons are produced with a certain Feynman xF and transverse momentum qT . The xF distribution
was calculated above in (117). The dipole approach also allows to calculate the differential DY cross
section. The qT dependence comes from the interference of the DY amplitudes with different impact
parameters and has the form [131, 136],

dσ(qN → γ∗X)

d lnα d2qT
=

1

(2π)2

∫
d2ρ1d

2ρ2 e
i~qT ·(~ρ1−~ρ2)Ψ∗γ∗q(α, ~ρ1)Ψγ∗q(α, ~ρ2)

× 1

2

[
σNqq̄(αρ1, x2) + σNqq̄(αρ2, x2)− σNqq̄(α|~ρ1 − ~ρ2|, x2)

]
. (118)

Replacing the qT -integrated quark-nucleon cross section dσ(qp → γ∗X)/d lnα in (117) by the dif-
ferential cross section (118), one gets the differential qT -dependent DY cross section in hN collisions.
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4.2 Drell-Yan process on nuclear targets

4.2.1 Shadowing in di-lepton production

The total cross section of the DY process on a nuclear target can be calculated with the same equation
(117) with a replacement dσ(qp → γ∗X)/d lnα ⇒ dσ(qA → γ∗X)/d lnα. The calculation of the
quark-nucleus DY cross section is also rather straightforward. One can employ Eq. (76), which was
used for DIS on nuclei, replacing the photon distribution functions ΨT,L

q̄q (α, rT ) by the γ∗q distribution

functions ΨT,L
γ∗q(α, rT ) given by Eq. (111). Examples of numerical results are presented in Fig. 30. The

A-dependence of the qT -integrated DY cross section is predicted [111] for the energies of RHIC and LHC
for proton and deuteron collisions with different nuclei. Calculations are done in the ”frozen-dipole”

Figure 30: Shadowing for the total DY cross sec-
tion as function of A1/3 at M = 4.5 GeV and
xF = 0.5. The lower pair of curves is for deuteron
– gold scattering and the two upper curves are for
proton – gold collisions.

Figure 31: Shadowing for the total DY cross sec-
tion in proton – gold (upper curves) and deu-
terium – gold (lower curves) collisions at the en-
ergies of RHIC and LHC at xF = 0.5 as function
of di-lepton mass M2.

approximation which is sufficiently accurate at these energies, and xF = 0.5. The scale dependence
of these calculations is presented in 31. As in DIS, the magnitude of shadowing slowly decreases with
rising scale. Notice that gluon shadowing is important at these high energies and was included in the
calculations (see details in [111]).

The results demonstrate a considerable difference between the nuclear effects for proton and deuteron
beams, which is related to isotopic effects. The radiation of a heavy photon is sensitive to the quark
charge.

4.2.2 Nuclear modification of the transverse momentum distribution

The quark-nucleon differential DY cross section, Eq. (118) is easily converted to the quark-nucleus one,
if the conditions for the ”frozen” approximation are fulfilled. Then, the cross section reads [131, 111],

dσ(qA→ γ∗X)

d lnαd2qT
=

1

(2π)2

∫
d2b

∫
d2ρ1d

2ρ2 e
i~qT ·(~ρ1−~ρ2)Ψ∗γ∗q(α, ~ρ1)Ψγ∗q(α, ~ρ2)

×
[
1− e−

1
2
σNqq̄(αρ1,x2)TA(b) − e−

1
2
σNqq̄(αρ2,x2)TA(b) + e−

1
2
σNqq̄(α|~ρ1−~ρ2|,x2)TA(b)

]
. (119)
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Convoluting this cross section with the quark distribution function of the beam hadron, one arrives at
the differential hadron-nucleus DY cross section,

dσ(hp→ γ∗X)

dM2dxFd2qT
=

αem
3πM2

1

x1 + x2

1∫
x1

dα

α
F h

2

(x1

α

) dσ(qA→ γ∗X)

d lnα d2qT
. (120)

The numerical results of calculations of the nuclear ratio (1) with equations (117) and (120), at the
energies of RHIC and LHC are depicted by dashed curves in Fig. 32. The ratio exhibits the so called
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Figure 32: The influence of gluon shadow-
ing on the nuclear ratio Eq. (1) of the DY
differential cross sections. Dashed curves
are calculated without gluon shadowing,
while solid curves include gluon shadow-
ing. The influence on the longitudinal DY
cross section is shown separately in the two
left-hand plots (L). The two plots on the
right show the DY ratio for the sum of
the transverse and longitudinal cross sec-
tions (T + L). Calculations are done at
xF = 0.625, M = 6.5 GeV, and the ener-
gies of RHIC and LHC.

Cronin effect (e.g. see Cronin effect for hadrons [137]), a nuclear enhancement at medium values of qT .
This can be interpreted as a result of increased mean transverse momentum of the di-lepton produced
on a nucleus compared to a proton target. Intuitively is can be understood as a result of multiple
interactions of the quark which ”shakes off” a heavy photon with increase qT after getting a stronger
kick from multiple rescatterings.

Gluon shadowing was also added in these calculations, and the results are plotted in Fig. 32 by
solid curves. One can rely on the small-ρ approximation, σq̄q(ρ) ∝ ρ2, which is quite accurate for DY
processes at qT > 1 GeV [133]. In this approximation the dipole cross section is proportional to the
gluon density [138],

σNqq̄(ρ, x)
∣∣∣
ρ→0

=
π2

3
αs

(
λ

ρ2

)
ρ2GN

(
x,
λ

ρ2

)
, (121)

where λ ≈ 10 is a phenomenological parameter. On a nuclear target one should replace GN

(
x, λ

ρ2

)
⇒

GA

(
x, λ

ρ2

)
/A, and correspondingly in Eq. (119),

σNqq̄(ρ, x)⇒ σNqq̄(ρ, x)RG

(
x,
λ

ρ2
, b

)
, (122)

The gluon contribution is appreciable, especially at the energies of LHC, and it practically terminates
the Cronin enhancement for radiation of transversely polarized photons.

4.2.3 A word of caution: incoherent effects imitating coherence

In the case of DIS we saw above that the smaller x is, the longer is the coherence time tc ∼ (2xmN)−1.
Correspondingly, shadowing increases with 1/x. This is not true anymore for DY processes. According
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to (107) x2 reaches the minimal value when x1 → 1. This is the kinematical limit and one needs to be
cautious. The coherence length (same as time) for a fluctuation of a quark q → l̄l q is given by,

lc =
2Eq

M2
l̄lq
−m2

q

, (123)

where

M2
l̄lq =

M2

1− α
+
m2
q

α
+

q2
T

α (1− α)
(124)

Apparently α > x1, therefore when x1 → 1, then α→ 1 and tc → 0, contrary to the naive expectation
based on the experience with DIS.

The mean coherence length can be evaluated similar to how it was done in Sect. 3.2.1 for DIS, i.e. by
averaging lc weighted with the γ∗q distribution functions and dipole cross sections. The results obtained
in[139, 140]for pp collisions at 800 GeV are plotted by solid curves in Fig. 33. Although at small x1

Figure 33: The mean coherence
length (123) vs x1 at different
dimuon masses. Dashed lines show
the predictions of QCD factorization
dependent only on x2.

Figure 34: Shadowing in DY reaction on carbon, iron and
tungsten as function of x2 for M = 4.5GeV (left) and
7.5 GeV (right). Nuclear shadowing disappears at large
and small x2 because the coherence length, Eqs. (123) and
(124), vanishes in these limits.

〈lDYc 〉 rises, because x1 is decreasing, upon approaching the kinematic limit x1 → 1 is steeply falls down.
Correspondingly, no shadowing is possible in this regime. Dashed lines linearly rising with 1/x2 ∝ x1

correspond to the usual behavior (70) for DIS, and would be valid also for DY, if QCD factorization
were correct.

As a result of these kinematical constraints the interval of x2 available for shadowing in DY data of
the E772/E866 experiments is rather narrow and the magnitude of shadowing [140] depicted in Fig. 34
is considerably smaller that what one would expect based on QCD factorization.

As long as shadowing in DY processes is weak at large x1, one may wonder what causes the con-
siderable nuclear suppression observes at x1 → 1 in DY data of the E772 and E866 experiments?
An example of data is depicted in Fig. 35. The data are selected with large di-lepton invariant mass
M > 6 GeV. According to Fig. 33 the coherence length for such a large scale is shorter than the mean
nucleon spacing 2 fm at all x1, therefore shadowing is impossible, while the data demonstrate a strong
nuclear suppression steadily growing towards x1 = 1.

Qualitatively, one should expect any hadronic system propagating through a medium to dissipate
energy [139, 140, 142]. Apparently, this makes it more difficult to produce any particle, in particular a
di-lepton, carrying a large fractional LC momentum x1 → 1, i.e. one should expect a nuclear suppression
of leading particles. In terms of the Fock state decomposition this can be seen as nuclear enhancement
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Figure 35: Ratio of DY cross sections on
tungsten to deuterium as a function of x1.
Data [141] are selected to have large di-
lepton masses to eliminate nuclear shad-
owing. The curves are calculated in [142]
including energy loss effects.

of higher components containing more gluons [142]. Correspondingly, should expect an x1-scaling for
the nuclear suppression. The results on numerical evaluation [142] is plotted in Fig. 35.

Notice that these results of the E772 and E866 DY experiments are included in most of the global
DGLAP based analyses aiming at the extraction of the nuclear PDFs from data. The incorrect treatment
of these DY data as shadowing certainly causes a bias in the results of such analyses.

The effect of increase nuclear suppression at the edge of the kinematic range is a general phenomenon
and has been also observed in hadron-nucleus collisions (see discussion and data in [143]).

The differential cross section of the DY reaction was found above to be modified by the coherence
effects on nuclei. However, even if the coherence length is short, a similar modification is possible. Fig. 36
presents data from the E866 experiment [144, 145], which exhibit a pronounced Cronin effect, although
the coherence length is too short to explain this by coherence. Even if lc is short, the projectile quark
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Figure 36: Comparison of theoretical pre-
diction of RW/Be(pT ) vs. pT (in GeV/c)
to experiment for x2 = 0.05. Data
are from the FermiLab E772/E866 experi-
ments [144, 145]. The curve shows the re-
sult of the calculation of broadening in the
color dipole approach [146].

experiences multiple interactions in the nucleus and pT -broadening prior radiation of the di-lepton. The
increase pT of the quark is transferred to the radiated dilepton as qT = αpT . The quark broadening can
be also calculated in the dipole approach [136, 147]

∆p2
T = 2TA(b)

∂σq̄q(rT )

∂r2
T

∣∣∣∣
rT=0

(125)

The result of numerical evaluation [146] of the Cronin effect is compared with data in Fig. 36.

5 DIS of neutrinos

5.1 Parton model

The charge current (CC) neutrino interaction ν(ν̄) + N → l(l̄) + X probes three different types of
structure functions [148],

dσν(ν̄)

dx dy
=

πα2
emmNEν

2 sin4(θW )(M2
W +Q2)2

[
y2

2
2xF

ν(ν̄)
1 (x,Q2) +

(
1− y − yxmN

2Eν

)
F
ν(ν̄)
2 (x,Q2)
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±
(
y − y2

2

)
xF

ν(ν̄)
3 (x,Q2)

]
, (126)

where the sign ± corresponds to either neutrino or antineutrino beams, respectively.
The new interesting features comes with the structure function F3, which in the leading order

carries information about the number of valence quarks Nv = 3 in the nucleon. Namely, measuring the
difference between the neutrino and antineutrino cross sections one arrives at a relation given by the
Gross-Llewellyn Smith sum rule [149, 148],

1

2

1∫
0

dx

x

(
xF νN

3 + xF ν̄N
3

)
= Nv

[
1− αs(Q

2)

π
− C

Q2
+O(Q−4)

]
(127)

The current value of the left-hand side of Eq. (127) measured in the CCFR experiment [150, 151]
is 2.5± 0.18± 0.078, which is 1.8 standard deviations below the expected value [148]. Notice, however,
that the CCFR data were taken on an iron target, therefore the structure function FA

3 is subject to
nuclear shadowing, reducing its value.

5.2 Shadowing: dipole description

As usual, the dipole representation is the most effective tool for prediction of nuclear shadowing. The
PDFs describing light and heavy flavors at small x in the nucleon correspond to fluctuations of the W -
boson into quark-antiquark dipoles, which interact with the target. The Cabibbo enhanced transitions
are to light quark dipoles, or strange-charm pairs. The perturbative light cone distribution functions,
compared to Eqs. (77)-(78), also include the axial parts, and read [152],

∣∣ΨT
q̄Q(α, rT )

∣∣2 =

√
2GFNc

(2π)3
(m2

W +Q2)
{[

(1− α)2m2 + α2µ2
]
K2

0(ε̃rT )

+
[
α2 + (1− α)2

]
ε̃2K2

1(ε̃rT )
}

(128)

∣∣ΨL
q̄Q(α, rT )
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GFNc√
2(2π)3
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1 +

m2
W

Q2

){([
2α(1− α)Q2 + (mQ −mq) [(1− α)mQ − αmq]

]2
+

[
2α(1− α)Q2 + (mQ +mq) [(1− α)mQ + αmq]

]2)
K2

0(ε̃rT )

+ 2(m2
Q +m2

q)ε̃
2K2

1(ε̃rT )

}
, (129)

where
ε̃2 = α(1− α)Q2 + αm2

q + (1− α)m2
Q. (130)

Using these distribution functions and the eikonal form (Eq. (28)) of the nuclear amplitude, the
shadowing effects for neutrino-nucleus interactions were calculated in [152, 153]. The results of [153]
for 56Fe are depicted in Figs. 37 and 38 for the nuclear ratios of F2 and xF3 respectively, plotted vs Q2

at fixed Bjorken x. Nuclear shadowing for F3 demonstrates a remarkably weak scale dependence.
Unfortunately, none of these calculations is sufficiently realistic to be compared with data: (i) At

small x < 10−2 gluon shadowing provides substantial corrections. It reduces the cross section of neutrino
interaction on bound nucleons, and at the same time make the nuclear medium more transparent. (ii)
At larger x ∼> 10−2 gluon shadowing can be neglected (see Sect. 3.2.6), however the ”frozen” dipole
size approximation employed in the above calculations is not valid, and should be replaced by the path
integral technique (see Sect. 3.2.2). (iii) At low Q2 . 1 GeV2 the perturbative distribution functions

44



Figure 37: The nuclear ratio FA
2 /AF2 as function

of Q2 at fixed x.
Figure 38: The nuclear ratio xFA

3 /AxF3 as func-
tion of Q2 at fixed x.

(128)-(129) are not to be trusted. Nonperturbative distribution functions were derived for vector [23, 24]
and axial [39, 40] currents in the instanton vacuum model.

Notice that the expected magnitude of nuclear suppression, xFA
3 /AxF

N
3 ≈ 0.85 explains well the

observed deviation from the Gross-Llewellyn Smith sum rule, Eq. (127). Power and quark mass correc-
tions to this sum rule were discussed and evaluated in [154]. The dipole description is an alternative
way of calculation, which is supposed to contain all such terms.

Part II

Experimental Study of Shadowing in
Lepton-Nucleus Scattering: Recent
Developments

6 Introduction

The experimental study of shadowing and anti-shadowing in lepton nucleus scattering has been domi-
nated by charged-lepton nucleus scattering. µ-A scattering at CERN and Fermilab and e-A scattering
at SLAC provided early evidence that the value of F2(x,Q2) per nucleon in nuclei was measurably dif-
ferent than F2(x,Q2) measured in deuterium in the low-x shadowing region. Most of these experiments
were performed in the ’80s and ’90s, and there have been only a few such experiments, notably the
HERMES experiment [155], since the shutdown of muon DIS experiments at CERN and Fermilab and
e-A experiments at SLAC. Several experiments at Jefferson Laboratory studied mid-to-high x nuclear
effects in more detail, but did not contribute significantly to the study of shadowing. With the up-
coming availability of the Jefferson Laboratory 12 GeV program offering a wider kinematic range, it is
expected that charged-lepton nucleus studies of shadowing and anti-shadowing will begin again.

On the other hand, studies of nuclear effects with neutrinos have only recently become possible
with high-statistics DIS experiments that also provide detailed covariant error matrices, allowing the
inclusion of correlated errors into the analysis. Neutrino nucleus scattering introduces a new facet
in the study of shadowing (and all x-dependent nuclear effects) with the presence of the axial-vector
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current. As shown in the theoretical treatment of shadowing, differences between `A and νA scattering
in the shadowing region are expected. More detailed and varied programatic studies of nuclear effects
with neutrinos are now being initiated with the availability of intense neutrino beams designed and
commissioned for neutrino oscillation measurements. The need for this study is further reinforced by
the necessity of understanding these nuclear effects in detail, to better estimate the systematic errors
on measured neutrino oscillation parameters. These new studies of neutrino nucleus scattering will
dominate this part of the review.

7 Charged-lepton Nucleus scattering

The present understanding of nuclear effects in lepton-nucleus scattering is mainly based on charged-
lepton–nucleus (`A) DIS data. In the early 80s, the European Muon Collaboration (EMC) [156] found
that the per-nucleon structure functions F2 for iron and deuterium differ as a function of xBjorken ≡ x.
This intriguing result initiated a series of follow-up experiments [157, 158, 159, 160, 161, 162, 163,
164, 165, 101, 166, 167, 168, 169, 170] to investigate the nuclear modifications of this ratio, R[F `A

2 ] =
F `A

2 /(AF `N
2 ), over a wide range of nuclear targets with atomic number A. These experiments established

that when scattering off nucleons within a nucleus in the deep-inelastic region with Q2 ≥ 1 GeV2, the
ratio of cross section per nucleon in nuclei to that in deuterium varies considerably in the kinematic
range from relatively small Bjorken x ∼ 10−2 to large x ∼ 0.8. The behavior of the ratio R[F `A

2 ] can
be divided into four regions:

• the shadowing region - R ≤ 1 for x . 0.1,

• the antishadowing region - R ≥ 1 for 0.1 . x . 0.25 ,

• the EMC effect - R ≤ 1 for 0.25 . x . 0.7,

• and the Fermi motion region - R ≥ 1 for x & 0.7.

There is no single inclusive model explaining the nuclear modifications across the whole x region.
The shadowing suppression at small x is the topic of this review, and the previous sections have
summarized the current status of the theoretical understanding of shadowing. The anti-shadowing
region is theoretically less well understood but, as indicated, might be explained by the application of
momentum, charge, and/or baryon number sum rules. The modifications at medium x (the so-called
“EMC effect”) are still lacking a convincing, community-accepted explanation, but are usually described
as nuclear binding and medium effects [171]. It has also been shown [172] that the EMC effect persists
at lower Q and W in the resonance/transition region. The rapid rise of the ratio at large x is attributed
to the Fermi motion of the nucleons within the nucleus.

Notice that the currently available experimental data from charged lepton-nucleus DIS scattering
have been obtained with fixed target experiments, where the values of x and Q2 are strongly correlated.
With the additional requirement that Q2 be large enough in order to apply perturbative QCD (e.g., Q2 >
1 GeV2), the majority of available experimental data covers a relatively limited region in x, where the
effect of nuclear shadowing is far from saturation. The review by Geesaman, Saito and Thomas [171]
summarized the experimental situation in 1995, and since then there has been limited amounts of
new data on shadowing from charged-lepton nucleus scattering in the DIS region. Although limited
recent data from charged-lepton nucleus scattering on shadowing are available, recent analyses of the
shadowing region to extract nuclear parton distributions have been performed. Current work on this
topic will be covered in Section 8.3

With these qualifications, the evidence for nuclear effects in charged-lepton nucleus scattering can be
summarized in Figure 39, which displays the F Fe

2 /FD
2 structure function ratio, as measured by both the
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SLAC eA and the BCDMS µA collaborations. The SLAC/NMC curve is the result of an A-independent
parametrization fit to calcium and iron charged-lepton DIS data [157, 161, 162, 170, 173, 174]. This
has often been used as a standard nuclear correction factor to convert data from a nuclear target to
a free-nucleon target, for both charged-lepton and neutrino interactions. Although not displayed in
this figure, there was also available experimental evidence for shadowing that is shown in the following
figures. Notice also in those figures that, particularly in the shadowing region, a single A-independent
curve does not reflect the experimental situation.

Figure 39: Nuclear correction factor, F Fe
2 /FD

2 , as a function of x. The parameterized curve is compared
to SLAC and BCDMS data [157, 161, 162, 170, 173]. The details of the shadowing regime are shown in
the following Figure 40 and Figure 41 for other nuclei since Fe data in the shadowing region did not
survive other applied cuts.

A more detailed look at shadowing experimental results, for specific nuclei such as C, N, Ca, Ag,
Sn and Xe, is shown in Figures 40 and 41. These data have been used in the comparison with the
parameter-free calculations shown in Figure 22 and also appear in Figure 12. Even for deuterium itself,
data from µ-nucleus scattering in the experiments E665 at Fermilab and NMC at CERN show clear
evidence of shadowing in the ratio of deuterium to hydrogen, Figure 42 .

Figure 40: Ratios of the deep inelastic cross section on targets of (a) carbon and nitrogen and (b)
calcium to those of deuterium [170, 156, 165, 95]

.
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Figure 41: Ratios of the deep-inelastic cross section on targets of tin, xenon and silver to those of
deuterium [170, 156, 169]

.

Figure 42: Nuclear correction ratio, FD
2 /F

H
2 , as a function of x [95, 169].

All experimental results in the shadowing region involving charged-lepton nucleus scattering are
consistent with the onset of shadowing occurring at a value of the Ioffe time (55) roughly equivalent to
the separation between nucleons in a given nucleus. Shadowing increases with increasing A and decreases
with increasing Q2. The Q2-dependence in the shadowing region, a small but non-zero slope in log Q2,
as seen by the NMC experiment, is consistent with descriptions [175] of shadowing prevalent some
years ago, of low-Q2 scattering being ascribed to vector meson dominance, as illustrated in Figure 20.
An understanding of the role of the longitudinal cross section in shadowing has been provided by the
HERMES experiment [155] that examined the ratio of RA/ RD with R = σL / σT the longitudinal to
transverse DIS cross sections. They found that RA/ RD is consistent with 1.0 for A up to 84Kr and the
kinematic range down to x = 0.01 and Q2 = 0.5 GeV 2. Furthermore, the HERMES data were quite
consistent with earlier measurements by the NMC collaboration [166, 176] accumulated at considerably
higher energies. No significant Q2-dependence was observed over the wide Q2 range covered by the
combined HERMES and NMC experiments.

8 Neutrino Nucleus Scattering

The measurement of neutrino deeply inelastic scattering, besides providing valuable information on
the weak current, can be a significant aid in determining the parton distribution functions (PDFs).
Neutrino and antineutrino DIS data directly measure specific quark flavors including the strange quark
and strange anti-quark distributions. Neutrino scattering provides the only current input to determine s
and s in the proton via the strange-to-charm quark transition and the subsequent detection of a charmed
particle decay. Combining neutrino Charged Current (CC) W± interactions with other probes, such as
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charged lepton (γ, Z), allows us to disentangle the separate PDF flavor components.
While for charged-lepton scattering the use of a nuclear target is a choice, for high statistics neutrino

scattering experiments it is a necessity, due to the weak nature of the {W±, Z} interactions. This
complicates the interpretation of neutrino scattering data, since these data are used for the extraction
of free nucleon PDFs, which depend on nuclear correction factors to account for the nuclear effects of
the nucleon being bound in a nucleus.

As in charged-lepton nucleus scattering, these nuclear correction factors essentially convert the
experimentally-measured structure functions in a bound nucleon within a nucleus to the corresponding
structure functions within a free nucleon. For charged-lepton nucleus scattering these factors are usually
given in terms of curves, such as in Figure 39, measured for a given nucleus at the relevant Q. In earlier
QCD global fits that attempted to include neutrino DIS data, the charged-lepton nuclear correction
factors were simply applied to neutrino nucleus scattering results. From the theoretical side it was
thought that these factors would be the same for neutrino nucleus scattering as for charged-lepton
nucleus scattering, with the possible exception of the shadowing/anti-shadowing region.

Early attempts to include neutrino-nucleus DIS scattering data, corrected with charged-lepton nu-
clear correction factors, introduced such tension in the shadowing region at low-x in global QCD fits
(described below) that the low-x neutrino data was excluded early-on in CTEQ nucleon PDF global
analyses. In a more recent examination of high-x parton distribution functions, carried out by the CTEQ
collaboration [174] and [177], indications began to accumulate that the nuclear correction factors for
neutrino nucleus scattering could indeed be different than those for charged-lepton nucleus scattering,
and not only in the shadowing region.

Although we will be concentrating on the shadowing region, in this section we will describe current
studies of nuclear effects in neutrino nucleus interactions across the full x range, since the behavior
of the cross section as it approaches the shadowing region from higher x is important. Using recent
neutrino-Fe and neutrino-Pb scattering data to directly extract the neutrino nucleus nuclear correction
factors, we will compare them to those extracted from charged lepton scattering, as well as to specific
model-dependent corrections provided by Kulagin and Petti [78]. The limitations of the Kulagin-Petti
model have been emphasized in section 3.1. However, it is the only “model” that has been available
for ν nucleus scattering, and therefore it has been heavily used by experimental and phenomenological
analyses. Finally, we will concentrate on what neutrino scattering data off nuclei is telling us about
shadowing and anti-shadowing, in interactions involving the axial-vector current.

8.1 Early Neutrino Nucleus Scattering Results

Soon after the discovery that muon interactions off bound high-A nuclei exhibited a different x depen-
dence than muon interactions off deuterium, this observation was tested with neutrino nucleus interac-
tions. The earliest tests were dominated by bubble chamber results [178, 179, 180, 181, 182], with one
notable exception involving the placement of a hydrogen target upstream of the CDHS (mostly) iron
detector [183].

None of the bubble chamber experiments was able to find a statistically significant effect such as that
found by the EMC collaboration. The combined CERN WA25 and WA59 analysis of ν and ν interactions
off deuterium and neon [179] concluded that their results were consistent with the EMC higher Q2

data for the x range between 0.3 and 0.6, and consistent with the SLAC lower Q2 data [159, 158] for all
x. They also concluded that there was no Q2-dependence in the low-x shadowing region, in the range
of 0.25 to 14 GeV 2. However, within the shadowing region they did see a depletion in the ratio of Ne
to D, as indicated earlier with Figure 6. Nevertheless, the statistics are limited and the claim of an
overall normalization uncertainty of 1% between the two independent exposures of WA25 and WA59,
based on the comparison of “muon” distributions in the alcoves, may be underestimated based on more
recent understanding of the signal vs background in these alcove measurements. The main challenge
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of these early ν A experiments was the accumulation of sufficient statistics with bubble chambers to
make significant comparisons between cross sections of different nuclei. An additional difficulty in the
comparison across experiments was the ≥ 20% uncertainty on the flux of incoming neutrinos for each
independent experiment. As mentioned above, even attempts at comparison of experiments in the same
beam were hampered by uncertainties in signal to noise in the measurements of muon alcove intensities
used for normalization.

A procedure was developed by the Fermilab E-745 heavy liquid bubble chamber collaboration[181] to
use the bubble-chamber’s ability to isolate nucleon recoils (“dark tracks”) as indication of interactions off
tightly-bound nuclei. By taking the ratio of events with and without these dark tracks, the collaboration
found an x-dependence of this ratio similar to that found by the earlier-referenced EMC collaboration.
However, a follow-up analysis by a BEBC collaboration [182] showed that one could get a similar
x-dependent ratio distribution by applying the same criteria to neutrino scattering off both deuterium
and hydrogen, thus suggesting this criteria was not indicative of scattering off a tightly bound nucleus.

Although the conclusion of the CDHS study of the ratio of iron to hydrogen cross sections and struc-
ture functions was that there were no statistically significant differences indicative of nuclear binding
effects in iron, their results, figure 1a of their publication [183], certainly follow the trend displayed in
the more statistically powerful CERN muon and SLAC electron results.

8.2 Recent Neutrino Nucleus Scattering Data: The ratio of ν-A to ν-
Nucleon Cross sections

The more contemporary study of ν nucleus scattering using high-statistics experimental results with
careful attention to multiple systematic errors began with the CDHSW, CCFR/NuTeV ν Fe, the NO-
MAD ν C and the CHORUS ν Pb experiments. Whereas the NuTeV [184] and CHORUS [185] Col-
laborations have published their full data sets, NOMAD [186] has not yet done so. Although NOMAD
displayed a small part of their preliminary data in a 2004 publication [187], using their data would
require extracting their measured points with errors from figures, an inaccurate procedure at best. The
more detailed analyses presented in the following will be made with mainly the CDHSW, CCFR and
NuTeV ν Fe results and the CHORUS ν Pb results.

The most direct comparison between scattering neutrinos off nuclei and off nucleons is a comparison
of the cross sections. This involves none of the assumptions that will be needed to extract structure
functions from these cross sections nor the procedures needed for global fits. Members of the CTEQ
collaboration have studied this direct cross section comparison [174, 177]. The eventual goal of this
study was to extract the nuclear correction factors from ν nucleus scattering, in order to compare them
with the similar nuclear correction factors from charged-lepton nucleus scattering, and to use them in
incorporating ν nucleus data in global analyses. This, in turn, requires taking a ratio of the measured ν A
cross sections to the corresponding “free-nucleon” quantities. For the charged-lepton nuclear correction
factors, the measured per-nucleon cross sections or structure functions off nucleus A were compared
directly to measured charged-lepton scattering results off deuterium. For neutrino scattering, a similar
ratio using scattering off deuterium is impossible, since there exist only low-statistics bubble chamber
data (see [188] and references therein). The statistical and systematic accuracy of these early bubble
chamber neutrino deuterium results is not sufficient for determining a neutrino nuclear correction factor.

Determining “free” Cross sections and Structure Functions for Comparisons To address
this, the nCTEQ collaboration decided to approximate the deuterium denominator in the neutrino
correction factors by creating “free” neutrons and protons from PDFs determined using a new reference
fit that involved data off mainly hydrogen and deuterium targets. This reference fit starts with the
CTEQ6.1M PDFs [54] and removes any neutrino nucleus data, keeping data involving proton and
deuterium targets. Nuclear corrections for deuteron targets were included where appropriate. Details on
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Figure 43: Comparison between the as measured Chorus and NuTeV neutrino cross section data off
nuclei, without any nuclear corrections, and the reference free-nucleon fit (“Theory”).

the treatment of heavy quarks, which primarily affects the low-x region for neutrino induced processes,
and therefore are significant when examining the shadowing region, as well as high-x corrections, can be
found in reference [174]. The resulting data for the reference came from the BCDMS Collaboration [189]
for F p

2 and F d
2 , from the NMC Collaboration [107] for F p

2 and F d
2 /F

p
2 , from H1 [190] and ZEUS [191]

for F P
2 , from CDF [192] and DØ [193] for inclusive jet production, from CDF [194] for the W lepton

asymmetry, from E-866 [195] for the ratio of lepton pair cross sections for pd and pp interactions, and
from E-605 [196] for dimuon production in pN interactions4.

The CTEQ determination of the ratio of ν-Fe and ν-Pb to ν-Nucleon Cross sections In
their analysis of νA scattering data, the CTEQ group used two of the recent sets of experimental
results mentioned; the CHORUS ν Pb and the NuTeV ν Fe data sets, examining the behavior of the
as measured cross sections displayed as a ratio to the “free-nucleon” cross section. Figure 43 shows
the results with only statistical errors displayed on the measured points. In general, there is agreement
between the different data sets, which is somewhat surprising. Aside from a few low-statistics CHORUS
ν data points, in the approach to the shadowing region from high-x (0.6 to 0.08) there is quite good
agreement between ν and ν and between Fe and Pb.

The CHORUS ν Pb data displays a very “traditional” x-behavior with (from high- to low-x) an
antishadowing region starting at x = 0.3, with a maximum and turnover toward the shadowing region
at x ∼ 0.15. On the other hand, the CHORUS ν Pb data, with significantly smaller errors, have a
much smaller antishadowing region shifted toward lower-x. Similarly, in approaching the shadowing
region from high-x, the NuTeV ν data follow the CHORUS ν Pb data closely. The NuTeV ν data,
again having much smaller errors than the ν data, are again consistent with both the CHORUS ν Pb
and the NuTeV ν data in the approach to the shadowing region.

However, in the low-x shadowing region the results are quite different, as shown in Figure 44 (low-x
details of Figure 43). Only the lower-statistics CHORUS ν and ν cross section ratios turn over and

4Note that the E-605 data were taken on a copper target, but the nuclear corrections in the relevant kinematic region,
outside the shadowing region, have been measured [198] to be consistent with A1, so no nuclear corrections were included
for these data
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Figure 44: Low-x details of the ratio of the Chorus and NuTeV measured cross sections, without any
nuclear corrections, to the “free-nucleon” reference cross section.

approach the expected R ≤1.0 axis. From the same figure, the NuTeV data sets show a somewhat
different behavior. Only at the very lowest x = 0.015 point (with the largest error) does the NuTeV ν
data turn over toward the shadowing region. The considerably more accurate NuTeV ν data does not
exhibit a shadowing turn-over even at the lowest x = 0.015 point.

It is reasonable to ask if this observed behavior of ν and ν off Fe and Pb is consistent with expec-
tations. One of the few models available that has been specifically designed to predict the ν A nuclear
corrections and is widely used by the experimental neutrino community is the model of S. Kulagin and
R. Petti (K-P) [199, 200, 201]. Their approach includes a QCD description of the nucleon structure
functions at high x, as well as the treatment of Fermi motion and nuclear binding, off-shell correction
to bound nucleon structure functions, nuclear pion excess and nuclear shadowing. Their model involves
several mechanisms in specific regions of xBj, to enable covering the entire xBj range. This model has
limitations, particularly in the shadowing region, emphasized in 3.1. However, it predicts a shadow-
ing turnover that is not seen in the NuTeV Fe data. How significant is this deviation of the NuTeV
measurements from expectations can be determined by carefully considering the errors of the measured
points.

A way of understanding how flexible the CHORUS and NuTeV measured points are within their
quoted errors is to apply a correction, like the K-P correction, to these cross section ratios, allowing the
so-corrected central value to vary, with an applied penalty term for excursions, within the systematic
errors. This then also serves as a test of the K-P model’s predicted nuclear correction factors for ν
A scattering. CTEQ corrected all four data sets with the Kulagin-Petti factors, while bringing in the
systematic errors of each data set into the fit. Within the larger systematic errors of the CHORUS
data, the K-P nuclear correction factors successfully correct the CHORUS data, bringing the corrected
data to the R = 1.0 axis (within errors), as shown in Figure 45. On the other hand, contrary to
expectations the uncorrected NuTeV data ratios are already at values of R ≥ 1.0 with small errors in
the ”shadowing” region. The K-P correction factors, being modeled to raise the values of R (toward
1.0) in the shadowing region, force the NuTeV values even further away from 1.0 when applied to the
NuTeV data points. This is a very different result than the one obtained in `Fe scattering.

Evidence for Shadowing from ν A Cross sections We then conclude that the CHORUS data,
within their errors, are consistent with the predictions of a more conventional model in the shadowing/anti-
shadowing region. The NuTev data is certainly NOT consistent with conventional expectations in the
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Figure 45: As an indication of the size of their systematic errors and the effect of the K-P nuclear
correction factors, the low-x details of the comparison between the Chorus and NuTeV neutrino cross
section data and the free-nucleon reference cross sections are shown, after the K-P corrections have
been applied and the measured points have been allowed to vary within the quoted systematic errors
to reduce the χ2 (see text).

shadowing/antishadowing region and the NuTeV ν cross section data do not show any shadowing be-
havior at all, down to the lowest x value of x = 0.015.

8.3 Recent Neutrino Nucleus Scattering Data: Global QCD Fits and Nu-
clear Parton Distribution Functions

To appreciate the more recent analyses of nuclear effects in neutrino nucleus scattering, it is necessary
to understand the concept and application of global QCD analyses of various experimental data. It has
been through such global fits, attempts to find a single fit-solution describing multiple data sets, that
tension between neutrino nucleus scattering and other data sets have suggested that nuclear correction
factors applied to the neutrino scattering data need to be re-examined.

The QCD Parton Model provides a comprehensive framework for describing general high energy
processes. In this framework, the cross-section for a hadron-hadron collision process is written as the
convolution of a set of universal non-perturbative Parton Distribution Functions (PDFs fi(x,Q

2
f )) and

a perturbatively-calculable hard cross section dσ̂.

dσl+N→l
′+X =

∑
i=q,q

fNi (Q2)⊗ dσ̂l+i→l′+i′(µ2, Q2). (131)

The parton distributions describe the structure of hadrons, and are the link between the physically
measured cross-sections dσl+N→l

′+X and the basic processes of the theory. Obviously, the precise deter-
mination of these functions is of fundamental importance for the interpretation of experimental results
within the Standard Model. These parton distribution functions should be applicable to all processes.
A goal of global QCD fits is to extract a set of parton distribution functions, while testing this concept
of universality. It is this concept of universality that will be considered in the discussions that follow.

Although global analyses began in the late 1970’s with the work of Gluck and Reya [202], and con-
tinued with the analyses of Duke and Owens [203] and Martin, Roberts and Stirling [204], it wasn’t until
the global analyses of Morf́ın and Tung [205], which were initiated in the 1988 Snowmass Workshop[206],
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that increased emphasis was placed on careful consideration of experimental systematic errors. Since
then there have been many subsequent global analyses, accommodating an increasing ensemble of types
of data with increasingly sophisticated treatment of experimental errors. The leading groups working on
global analyses of free-nucleon PDFs today are the CTEQ (works described in this review and [207]),
the MSTW [208], and the NNPDF [209] collaborations. There has been no reason to suspect that
independent global analyses could not be applied to experimental data off nuclear targets as well as
nucleon targets. The challenge has been to perform global fits to a combination of nucleon-target and
nucleus-target data, which call for nuclear correction factors to compensate for nuclear effects. The
results of fits to nuclear targets and the determination of nuclear correction factors will be discussed
below.

Global analyses adopt functional forms appropriate for parton distributions at all Q, so the evolved
distributions can then be given in a simple analytic form, which varies smoothly over the entire range of
x. The goal is to minimize the role of the chosen initial point of evolution. A simple form that satisfies
the above considerations is, for example:

xf(x,Q2
0) = c0x

c1(1− x)c2ec3x(1 + ec4x)c5 (132)

where the c-coefficients are called the shape parameters. An advantage of this parametrization for a
study of shadowing is that it provides a way to emphasize the small-x behavior of the parton distributions
via the value of c1.

Once the parameterization of the PDFs has been chosen at the initial scale Q2
0 as indicated above,

the procedure for a “global fit” is then:

• Evolve the PDFs from the initial Q2
0 to the relevant larger scales Q2 > Q2

0 of the experimental
data by the DGLAP equations.

• Compute the physical observables to be tested.

• Determine how well the computed observables match the experimental ones via a χ2-function that
compares the measured experimental values and their associated statistical and systematic errors
with the computed values.

• Vary the c-coefficients until the best agreement with the data is reached by observing a minimum
in the χ2-function.

The actual process of finding the minimum χ2 in practice is a non-trivial task, since the χ2 involves both
statistical and systematic experimental errors. General-purpose minimization packages like MINUIT [210]
can be used to initiate the process, but global fitting is also an art that requires additional considerations.

8.3.1 Global Fits: Nuclear Structure Functions, Nuclear Parton Distributions and Cor-
rection Factors

A comparison of results from neutrino scattering as well as charged-lepton scattering off nuclear targets
can be done with global fits to extract nuclear parton distributions. With these nPDFs, one can then
study both the magnitude and the shape of the nuclear correction factors RA

i (x,Q0), for both neutrino
and charged-lepton scattering. The experimental input can be, preferably, the measured differential
cross sections or the extracted nucleon/nuclear structure functions.

Using the ratio of extracted ν-A to ν-Nucleon Structure Functions A possible experimental
input to these global fits involves the extracted nuclear structure functions from the differential cross
sections. With sufficient statistics and control of systematic errors the structure functions F2(x,Q2),
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xF3(x,Q2) and, RL(x,Q2) = σL/σT can be determined independently for neutrino and antineutrino, by
fitting the y-distribution of events in a given x-Q2 kinematic “box”. This procedure leads to a total of
six structure functions.

Somewhat less demanding in statistics and control of systematic errors, the “average” structure
functions F2(x,Q2) and xF3(x,Q2) can be determined from fits to combinations of the neutrino and
antineutrino differential cross sections, with several assumptions. This is the procedure used by the
NuTeV collaboration. The sum of the ν and ν differential cross sections, yielding F2 can then be
expressed as (see also 126):

d2σ

dxdy

ν

+
d2σ

dxdy

ν

=
G2
FME

π

[
2
(

1− y − Mxy

2E
+
y2

2

1 + 4M2x2/Q2

1 +RL

)
F2 + y

(
1− y

2

)
∆xF3

]
.(133)

where now F2 is the average of F ν
2 and F ν

2 , and the last term is proportional to the difference in xF3 for
neutrino and antineutrino probes, ∆xF3 = xF ν

3 − xF ν
3 . At leading order, assuming symmetric s and c

seas, this is 4x (s− c). The cross sections are also corrected for the excess of neutrons over protons in
the iron target (5.67%), so that the presented structure functions are for an isoscalar target.

A significant step in the determination of F2(x,Q2) in this manner, that surely affects the low-x
(shadowing) values, is the assumed ∆xF3 and RL(x,Q2). NuTeV uses a NLO QCD model as input
(TRVFS [211]), and assumes an input value of RL(x,Q2) that comes from a fit to the world’s charged-
lepton measurements [212]. It is important to emphasize that the NuTeV F2(x,Q2) extracted points
in the shadowing region with x ≤ 0.1 are extremely dependent on these two assumptions. In addition,
from the NuTeV publications it is difficult to determine if the assumed R and ∆xF3 have been corrected
for nuclear effects up to Fe and, if so, how has this been done. For this reason it is preferable to directly
use the measured differential cross sections in these fits rather than the extracted average structure
functions.

Determining the Nuclear Correction Factors There are two alternative approaches for deter-
mining these nuclear correction factors. They both lead either directly or indirectly to the concept of
nuclear parton distribution functions. One approach that will be referred to as method 1, is to use
the basic global analysis formalism described above, implemented in a global PDF fitting package of
experimental results off nuclei, with no nuclear corrections applied to the analyzed data. If the nuclear
modifications of the x-shape in this analysis are modest, the initial parametrization of Equation 132
should provide enough flexibility to also accommodate these now nuclear parton distribution functions
(nPDF). Notice that the resulting nPDFs are frequently referred to as the PDFs of a bound nucleon.
Such an interpretation is reasonable at large x, because the lifetime of hadronic fluctuations is short,
and the incoming lepton reaches a bound nucleon deep inside the nucleus without any preceding inter-
actions. However, this is not true at small x in the shadowing region. A long living hadronic fluctuation
coherently interacts with a whole chain of nucleons, rather than with a separate bound one, therefore
the DIS process probes the collective PDFs of the nucleus. These nPDFs are different from the ones of
a free nucleon, and are subject to shadowing, i.e. they rise with the number of nucleons slower than lin-
early. This can also be interpreted in the infinite momentum frame of the nucleus, where as is explained
in Sect. 3.1 and illustrated in Fig. 10, the parton clouds originating from different nucleons overlap and
can fuse at small x, where they form a common parton distribution for all involved nucleons. These
collective nPDFs cannot and should not be identified with any individual bound nucleon.

Given then both nPDFs and free-nucleon PDFs, the nuclear correction factors can be determined for
a given nucleus. Within the parton model, the nuclear correction factor RA

i (x,Q0) for an experimentally
measurable quantity Mi can be defined as follows:
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RA
i (x,Q0) =

MA
i (x,Q0)

MN
i (x,Q0)

(134)

where MA
i (x,Q0) represents the measurable quantity computed with nuclear PDFs, and MN

i (x,Q0) is
the same quantity constructed for the average nucleon, (n+p)/2, out of the free-nucleon PDFs.

An alternative approach, method 2, is to assume a set of free-nucleon PDFs, calculate fpi (x,Q0)
and fni (x,Q0), and then use global fitting techniques to fit the nuclear correction factors, also called
weighting-factors that modify the free nucleon PDFs to provide agreement with the measured nuclear
quantity. This method also yields nPDFs as a by-product of the fit:

MA
i (x,Q0) = RA

i (x,Q0)
1

A
[Z f pi (x,Q0) + (A− Z)fni (x,Q0)] , (135)

In either method, RA
i (x,Q0) depends on the observable under consideration since different observables

may be sensitive to different combinations of PDFs. For example the nuclear correction factor RA
i (x,Q0)

for FA
2 and FA

3 will, in general, be different. Additionally, the nuclear correction factor for FA
2 will yield

different results for the ν-Fe process as compared with the charged-lepton `±-Fe process. In both cases
this is due to the different parton contributions to each process.

Contemporary attempts to use global fitting techniques to extract these nuclear parton distribu-
tion functions and/or the nuclear correction factors began with the pioneering work of Eskola and
Paukkunen [213, 215, 214] and later in collaboration with C. Salgado [216]. The study continued with
the works of Hirai, Kumano and Nagai [217, 218, 219] and deFlorian and Sassot [220, 225], all who
used variations of method 2. The latest group to compute nPDFs, the nCTEQ group, employs method
1 [221, 222, 223, 224].

8.3.2 Global Fits: The nCTEQ Nuclear Parton Distributions and Correction Factors

In contrast to the procedure employed by other nPDF global analysis groups, the nCTEQ group5.
employs method 1, that is to use the basic global analysis formalism, implemented in a global PDF
fitting package of results off nuclei, with no nuclear corrections applied to the analyzed data and no
assumed set of free-nucleon PDFs. This then is a direct fit of the nPDFs themselves.

To confirm that this procedure that uses nuclear global fitting techniques and does not assume a set
of nucleon PDFs to start with, is reasonable, the procedure is first applied to charged-lepton scattering
results. The goal of the nCTEQ group is to determine an independent evaluation of the charged-lepton
nuclear correction factor, F Fe

2 /FD
2 , that is preferred by the data. It can than be directly compared with

the SLAC-NMC factor and with the predictions of other models and global charged-lepton fits. After
cuts on Q (≥ 2.0 GeV) and W (≥ 3.5 GeV), the fit used over 700 data points over the complete x range,
which are listed in Tables I, II and III of publication [222]. The nuclei included in the fit ranged from
He to Pb in ratios to deuterium, and Be to Pb in ratios to C. In particular the data surviving the cuts
in the ratios of C, Ca and Cu to deuterium were the main drivers to the turnover into the shadowing
region at low x. There were no Fe to deuterium ratios for x ≤ 0.7 (the shadowing region) that survived
the cuts.

The nCTEQ result is displayed in Figure (46-a) for Q2 = 5 GeV2, and in Figure 46-b) for Q2 =
20 GeV2. The figures of the ratio F Fe

2 /FD
2 are in good agreement with the SLAC/NMC parameterization

of Figure 39 and with the fits from Hirai-Kumano-Nagai (HKN07) [219]. The data points displayed in

5This section is a summary of work performed by a CTEQ/Grenoble/Karlsruhe collaboration consisting of: K. Kovarik
(Karlsruhe, Inst. Technology), I. Schienbein (Joseph Fourier U.), J. Y. Yu (Southern Methodist U.), C. Keppel (Hampton
U), J. G. Morf́ın (Fermilab), F. I. Olness (Southern Methodist U.), J. F. Owens (Florida State U.) and T. Stavreva (Joseph
Fourier U.)
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Figure 46: Using a fit to all charged-lepton data (`±A) and DY data, off a variety of nuclei, that passed
their cuts, the nCTEQ computed nuclear correction factor, F Fe

2 /FD
2 (solid line labeled fit B), as a

function of x is shown in Figure-(a) for Q2 = 5 GeV2 and Figure-(b) for Q2 = 20 GeV2. Both fits are
compared with the SLAC/NMC parameterization, as well as the Hirai et al. (HKN07), (Ref. [219]) fit
to charged-lepton nucleus scattering data and the Kulagin-Petti model predictions. The data points
displayed in the Figures are the measured Fe to D ratios that survived the cuts.

Figure 46 are the data available off Fe that satisfied the cuts. The success of this comparison suggests
that this method can also be successfully applied to ν-A scattering results.

Nuclear Correction Factors for F ν
2 (x,Q2) and F ν̄

2 (x,Q2) A similar procedure is then used to
extract the neutrino nuclear correction factor F Fe

2 /FD
2 . To apply this procedure now to ν-A scattering,

there are several data sets that can be considered. The earliest is the CDHSW ν-Fe data. followed
by the CCFR ν-Fe data, the NuTeV ν-Fe data and finally the CHORUS ν-Pb data. However, if one
demands a full covariant error treatment of the published data, yielding maximal discriminatory power
of the data, there is essentially only the NuTeV ν-Fe and CHORUS ν-Pb scattering data for input. This
would also be a natural selection by the fit itself. If the CDHSW and CCFR data, with their errors
calculated via the sum of the squares of statistical and systematic errors, were added to the NuTeV and
CHORUS data with their full covariant error matrix for the fit, the weight of the CDHSW and CCFR
data points in the combined fit would be greatly reduced. This was shown in the earlier treatment of
neutrino cross sections, when the NuTeV Fe and the CHORUS Pb data were combined. In this case,
even though both data sets have full covariant error matrices, the relatively small NuTeV errors with
respect to the CHORUS errors enable the NuTeV data points to dominate the combined fit.

An additional input to the fit is the NuTeV/CCFR di-muon data [226], which are sensitive to the
strange quark content of the nucleon. However, no other data such as charged-lepton–nucleus (`±A)
and DY data have been used. Because the neutrino data alone do not have the power to constrain all
of the PDF components, a minimal set of external constraints [224] also has to be imposed and some
of these external assumptions do indeed affect the behavior of the fit parton distributions at small x
- the shadowing region. These include the Callan-Gross relation (F νA

2 = 2xF νA
1 ) as well as use of the

assumption s = s and c = c.
It is important to note that the nCTEQ fit is made directly to the double differential cross sections in

order to extract the set of nPDF consistent with the NuTeV measured differential cross section points.
The fit does not use the extracted NuTeV results of the average value of F2(x,Q2), which contains all
the assumptions made by NuTeV to extract them. The extracted nPDFs are then combined with the
earlier-described free-nucleon PDFs to form the individual values of the nuclear correction factor R for
a given x and Q2, separately for neutrino and anti-neutrino - not the average of both - as shown in
Figure 47 for ν–Fe and in Figure 48 for ν̄–Fe. Since the difference between F2(νA) and F2(ν̄A) is small,
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Figure 47: Nuclear correction factor R for the structure function F2 in charged current νFe scattering
at a) Q2 = 5 GeV 2 and b) Q2 = 20 GeV 2. The solid curve shows the result of the nCTEQ analysis of
NuTeV differential cross sections (fit A2), divided by the results obtained with the reference fit (free-
proton) PDFs; the uncertainty from the A2 fit is represented by the yellow band. Plotted also are NuTeV
data points of the average F2 (see text) to illustrate the consistency of the fit with the input points.
For comparison the correction factor from the Kulagin–Petti model [78] (dashed-dot line), HKN07 [219]
(dashed-dotted line), and the SLAC/NMC parametrization (dashed line) of the charged-lepton nuclear
correction factor are also shown.
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Figure 48: The same as in Fig. 47 for νFe scattering.

the consistency of these extracted values of F2(x,Q2) with the measured average values from NuTeV
can be shown in Figure 47.

It is also of course possible to combine these fitted nPDFs to form the individual values of the
average of F2(νA) and F2(ν̄A) for a given x and Q2, to compare directly with the NuTeV published
values of this quantity. This was recently done and the nCTEQ preliminary results6 for low-Q2 are
shown in Figure 49.

The comparison between the nCTEQ fit that passes through the NuTeV measured points, and the
charged-lepton fit is very different in the lowest-x, lowest-Q region and gradually approaches the charged-
lepton fit with increasing Q. However, the slope of the fit approaching the shadowing region from higher
x, where the NuTeV measured points and the nCTEQ fit are consistently below the charged-lepton A
fit, make it difficult to reach the degree of shadowing evidenced in charged-lepton nucleus scattering at
even higher Q2

6We thank Karol Kovarik,(Karlsruhe, Inst. Technology) for allowing us to use these preliminary results presented at
the 2012 DIS conference in Bonn [227]
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Figure 49: Nuclear correction factor R for the average F2 structure function in charged current νFe
scattering at Q2 =1.2, 2.0, 3.2 and 5.0 GeV 2 compared to the measured NuTeV points. The green
dashed curve curve shows the result of the nCTEQ analysis of ν A (CHORUS, CCFR and NuTeV)
differential cross sections plotted in terms of the average F Fe

2 divided by the results obtained with
the reference fit (free-proton) PDFs. For comparison, the nCTEQ fit to the charged-lepton data from
Figure 46 is shown by the solid blue curve.

nCTEQ: Shadowing in ν-A Scattering As concluded above, the nCTEQ fit to `±A and DY data
is generally consistent with the SLAC/NMC parameterization and HKN fits to calibrate and certify
the nCTEQ method. However, the nCTEQ fits νFe scattering in Figures 47, 48 and 49 do not agree
with the charged-lepton nucleus fits. Although there is a general tension over most of the x-range, the
biggest difference is in the shadowing region, where the non-existent turn-over of the NuTeV νFe cross
section data in the shadowing region at lower Q2 is again evident. Since lower Q2 data dominates the
low-x region, this also explains the lack of any shadowing turnover at all in the ratio of cross-sections
in Figure‘43.

8.3.3 Global Fits: The Eskola-Paukkunen-Salgado (EPS) Nuclear Parton Distributions
and Correction Factors

Although the discussion of nuclear parton distributions began in the late 70’s[228], it was with the
early work of K. J. Eskola and colleagues [229] that the more modern era of extracting nuclear parton
distributions via global fits to a variety of lepton-nucleus data began. Their systematic consideration of
νA scattering was treated in their work of 2009, published in 2010 [230], and then revisited to specifically
address the consistency of νA DIS results and general nPDF results [231].

Their analysis [230] uses method 2 with the CTEQ6.6 free-nucleon PDFs as their basis set. It is
important to note that instead of using the full covariant error matrix, they have chosen to add the
statistical and systematic uncertainties in quadrature when computing χ2. This implies that the total
errors they are using are larger than those used by nCTEQ and thus have less discriminatory power
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when compared to other results. They form a ratio of data versus theory that is based on CTEQ6.6:

RCTEQ6.6 ≡ σν,ν (Experimental)

σν,ν (CTEQ6.6)
, (136)

When using νA as the experimental numerator and comparing it to a denominator calculated with
free-nucleon PDFs (CTEQ6.6) a rather poor fit could be naturally expected. Then they form a second
purely theoretical ratio:

RCTEQ6.6×EPS09 ≡ σν,ν (CTEQ6.6× EPS09)

σν,ν (CTEQ6.6)
, (137)

using the nuclear correction factors from their EPS09 [232] analysis and introducing CTEQ6.6 PDF
uncertainties based in turn on upper and lower cross section uncertainties based on the PDF uncertainty
analysis. If the nuclear correction factors determined by EPS09, based on charged-lepton nucleus
scattering, are correct also for νA scattering, then RCTEQ6.6 should be consistent with RCTEQ6.6×EPS09.

They report their conclusions as a function of additional necessary radiative and target mass cor-
rections that are made either separately, together or not at all. An example, from Table 1 of their
publication, is their findings for the χ2/N -values when making neither and then both the radiative and
target-mass corrections:

Radiative and Target Mass corrections CTEQ6.6 CTEQ6.6×EPS09

NuTeV 1.51 1.05
CHORUS 1.15 0.79
CDHSW 1.10 0.71

No Radiative or Target Mass corrections CTEQ6.6 CTEQ6.6×EPS09

NuTeV 1.35 1.08
CHORUS 1.23 1.09
CDHSW 0.96 0.86

Table 3: The χ2/N -values computed using CTEQ6.6 with and without nuclear modification from EPS09. The
numbers are given for calculations with and without the radiative and the target mass corrections.

From their comparison of the change in χ2 as they add these corrections, they conclude:

• Whatever way they make the calculation, the one without nuclear corrections from EPS09 gives
substantially larger χ2.

• For CHORUS and CDHSW data, the χ2s get consistently smaller as the radiative and target mass
are applied.

• For NuTeV data, the χ2 remains practically unchanged whether radiative or target mass correc-
tions are applied or not.

They note that in their fit to the NuTeV data shown in Figure 50, their predictions are in perfect
agreement for some NuTeV energy ranges, whereas there are significant and inconsistent deviations in
other energy bins.

Eskola-Paukkunen-Salgado: Shadowing in ν-A Scattering Their overall conclusion of the anal-
ysis of CDHSW, CHORUS and NuTeV data sets is that only the NuTeV neutrino data is inconsistent
with nuclear PDFs determined from charged-lepton nucleus scattering. They attribute the NuTeV
discrepancy to an unexplained, neutrino energy-dependent fluctuations in the data and assert that the
NuTeV data should not be used in making conclusions about the universality of nuclear PDFs. Without
the NuTeV data they conclude that there is no inconsistency between ν-A and `-A scattering in any of
the x-dependent nuclear effects regions - including the shadowing region.
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Figure 50: The Q2-averaged NuTeV neutrino data compared to the EPS09*CTEQ6.6 fit.

8.3.4 Global Fits: The Hirai-Kumano-Nagai Nuclear Parton Distributions and Correc-
tion Factors

This group extracts nPDFs using method 2, by fitting weight factors. They have a complete set of nPDFs
for fits to data other than ν-A scattering. They do comment on nuclear effects in ν-A scattering [233],
but do not make explicit fits including ν-A scattering results.

8.3.5 Global Fits: The de Florian-Sassot (dFS) Nuclear Parton Distributions and Cor-
rection Factors

The de Florian-Sassot global analyses yielding nPDFs began in 2004 [220]. They were the first group
to apply a NLO analysis to nuclear data. In their initial analyses they used a convolution relation to
relate the “free-nucleon” PDFs to the bound nPDFs via a weight-function Wi(y, A, Z):

fAi (xN , Q
2
0) =

∫ A

xN

dy

y
Wi(y, A, Z) fi(

xN
y
,Q2

0) (138)

that allowed them to perform evolutions in Mellin space for increased accuracy. They used the
GRV98 [234] free- proton PDFs as their basis set and fit the weight functions to a variety of charged-
lepton DIS and Drell-Yan large-A data. They performed no error analysis of the nPDF sets. Their
extracted values of FA

2 /F
D
2 = RA

ν (fi) are shown in Figure 51. As can be seen they fit quite well the
shadowing region for all values of A.

The group latest global analysis [225] now also includes P. Zurita and M. Stratmann as co-authirs.
There are considerable updates from the first version outlined above. They have replaced the proce-
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dure based on the convolution integral Eq.(138) with the more conventional approach of a “nuclear
modification factor” (nuclear correction factor) given by Eq.(135). They also have chosen to use the
MSTW [235] NLO free-proton PDFs as their basis set. Their strategy is to parametrize the RA

i (xN , Q0)
in Eq. (134) for individual quarks and gluons as, for example, the valence quarks, where both valence
quark distributions are assigned the same nuclear modification factor RA

v ), which they parametrize as:

RA
v (x,Q2

0) = ε1 x
αv(1− x)β1 ×

(1 + ε2(1− x)β2)(1 + av(1− x)β3) , (139)

They have expanded the data set used in their fit to include not only DIS and Drell-Yan off larger-A
targets, but now also ν-A scattering and inclusive pion production in deuteron-gold collisions.

Concentrating on their fit to ν-A results, they include the data sets from NuTeV (Fe), Chorus (Pb)
and CDHSW (Fe). They fit to the averaged structure functions F2,3 ≡ (F νA

2,3 +F ν̄A
2,3 )/2 from appropriate

linear combinations of neutrino and antineutrino CC DIS differential cross sections, as opposed to the
differential cross section for ν and ν̄ independently. Their treatment of data point uncertainties uses
the statistical and systematic uncertainties of the data added in quadrature as compared to the nCTEQ
analysis that uses the full correlated covariant error matrix provided by the NuTeV collaboration. Both
of these choices make considerable difference when compared to the nCTEQ analysis. They conclude
that the CC data for the averaged structure function F2 are quite well reproduced both in shape and
in magnitude, within the experimental uncertainties, by their fit, as illustrated by Fig. 52.
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a function of Q2 in various bins of xN for NuTeV (Fe) and CHORUS (Pb) targets shown as solid and
dashed lines, respectively.

de Florian-Sassot: Shadowing in ν-A Scattering On the basis of their analysis they conclude
that there is no disagreement between neutrino and charged-lepton nuclear correction factors and that
a common set of nPDFs fitting both neutrino and charged lepton data over the full x range, including
the shadowing region, can be found.

8.4 Comparison of the `±A and νA Nuclear Correction Factors

There is an obvious difference in the conclusions drawn by the nCTEQ group compared to those drawn
by the EPS and dFS groups with respect to the `±A and νA nuclear correction factors, particularly for
the shadowing region.

For the nCTEQ analysis, the contrast between the charged-lepton (`±A) case and the neutrino
(νA) case is striking. While their charged-lepton results that fit to charged-lepton and Drell-Yan
data generally align with the SLAC/NMC and HKN determinations, the neutrino results clearly yield
different behavior as a function of x, particularly in the shadowing/anti-shadowing region. In the ν
case, these differences are smaller but persist in the low-x shadowing region. They emphasize that both
the charged-lepton and neutrino results come directly from global fits to the data, and there is no model
involved. They further suggest that this difference between the results in charged-lepton and neutrino
DIS is reflective of the long-standing “tension” between the light-target charged-lepton data and the
heavy-target neutrino data in the historical global PDF fits [236, 237]. Their latest results further
suggest that the tension is not only between charged-lepton light-target data and neutrino heavy-target
data, but also between neutrino and charged-lepton heavy-target data. In other words, a difference
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between charged-lepton (`±A) and the neutrino (νA) when comparing the same A.
For both the EPS and dFS no significant difference is found between the charged-lepton (`±A) and

the neutrino (νA) cases, and particularly no difference in the shadowing region, where the nCTEQ
group finds a significant difference and where differences are actually expected theoretically, although
certainly not of the magnitude as found by the nCTEQ group.

Concentrating on this interesting difference found by the nCTEQ group, if the nuclear corrections for
the `±A and νA processes are indeed different there are several far-reaching consequences. Considering
this, the nCTEQ group has performed a unified global analysis [221] of the `±A, DY, and νA data
(accounting for appropriate systematic and statistical errors) to determine if it is possible to obtain a
“compromise” solution including both `±A and νA data. Using a hypothesis-testing criterion based on
the χ2 distribution that can be applied to both the total χ2 as well as to the χ2 of individual data sets,
they found that it was not possible to accommodate the data from νA and `±A DIS by an acceptable
combined fit. That is, when investigating the results in detail, the tension between the `±Fe and νFe
data sets does not permit a compromise fit, which adequately describes the neutrino DIS data along with
the charged-lepton data and, consequently, `±Fe and νFe based on the NuTeV results, have different
nuclear correction factors.

A compromise solution between νA and `±A data can be found only if the full correlated system-
atic errors of the νA data are not used and the statistical and all systematic errors are combined in
quadrature, thereby neglecting the information contained in the correlation matrix. In other words,
the larger errors resulting from combining statistical and all systematic errors in quadrature reduces
the discriminatory power of the fit, such that the difference between νA and `±A data are no longer
evident. This conclusion underscores the fundamental difference [221] of the nCTEQ analysis with the
analyses of EPS and dFS.

On the other hand, a difference between νA and `±A is not completely unexpected, particularly
in the shadowing region, and has previously been discussed in the literature [238, 78, 238, 239]. The
charged-lepton processes occur (dominantly) via γ-exchange, while the neutrino-nucleon processes occur
via W±-exchange. The different nuclear corrections could simply be a consequence of the differing
propagation of the hadronic fluctuations of the intermediate bosons (photon, W ) through dense nuclear
matter. Furthermore, as stressed above, since the structure functions in neutrino DIS and charged
lepton DIS are distinct observables with different parton model expressions, it is clear that the nuclear
correction factors will not be exactly the same. What is, however, unexpected is the degree to which
the R factors differ between the structure functions F νFe

2 and F `Fe
2 . In particular the lack of evidence

for shadowing in neutrino scattering down to x ∼ 0.02 at low Q2 is quite surprising.

8.5 Evidence for Shadowing in ν-A Scattering

The ratio of FA
2 (x,Q2) with respect to the free-nucleon F2(x,Q2) naturally reflects the general behavior

of the cross section. However, instead of integrating over Q2 to get a cross section in a given x interval
as was done above, the x-behavior of the structure function within a specific Q2 range can be examined.

For the lower Q2 regions of the average F Fe
2 (x,Q2) shown already in Figure 49, the comparison

between the nCTEQ ν-A fit and the nCTEQ charged-lepton fit suggests very different behavior. There is
no indication of shadowing in the lowest-x, lowest-Q regions, with the ν-A fit only minimally approaching
the charged-lepton fit with increasing Q. However, even when examining the higher Q2 range, as shown
in Figure 53, where the low-x shadowing region becomes kinematically inaccessible as Q increases, the
slope of the ν-A fit approaching the shadowing region from higher x for 1.2 ≤ Q2 ≤ 30 GeV 2 would
make it difficult to mimic the shadowing evidenced in charged-lepton nucleus scattering.

It is important to emphasize that this apparent disagreement between νA and `±A shadowing
behavior is based only on the NuTeV data and the use of their full covariant error matrix in the global
analysis. This disagreement was not seen by the two other analyses that, however, did not use the full
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Figure 53: Nuclear correction factor R for the average F2 structure function in charged current νFe
scattering at Q2 = 8.0, 12.5, 20.0 and 31.6 GeV 2 compared to the measured NuTeV points. The green
dashed curve shows the result of the nCTEQ analysis of ν A differential cross sections plotted in terms
of the average F Fe

2 divided by the results obtained with the reference fit (free-proton) PDFs. For
comparison, the nCTEQ fit to the charged-lepton data from Figure 46 is shown by the solid blue curve.

discriminatory power of the NuTeV data. Figure 54 summarizes the results of various global fits to both
νA and `±A scattering. The curves marked nCTEQ `±A, EPS09 and HKN07 are fits to `±A scattering,
while the nCTEQ νA and DSSZ preliminary are fits to νA scattering. The DSSZ preliminary fit is
made to the average F2 and does not use the full NuTeV covariant error matrix, while the nCTEQ
fit is to the double-differential cross sections and does use the full covariant cross section. Before any
far-reaching conclusions can be drawn, it is important to gather significantly more data from other
experiments using other nuclei.

9 Current Experimental Studies of ν-A Nuclear Effects

9.1 The MINERνA Experiment at the FNAL Main Injector Neutrino
Beam (NuMI)

One such experiment that is currently taking data is the MINERνA (Main Injector ExpeRiment: ν A)
experiment [240], a collaboration of elementary-particle and nuclear physicists. The experiment has
installed a fully active fine-grained solid scintillator detector in the NeUtrinos from the Main Injector
(NuMI) beam. The overall goals of the experiment are to measure absolute exclusive cross-sections,
study nuclear effects in ν - A interactions (with A varying from He to Pb), and perform a systematic
study of the resonance-DIS transition and the full DIS region. A determination of these x-dependent
nuclear effects with neutrino and antineutrino off a wide range of nuclear targets will start with the
current exposure and will continue when the neutrino beam is tuned to higher energies starting in 2013.

A schematic of the MINERνA detector is shown in Fig. 55. The detector consists of five main
regions: the fully active central detector, the upstream nuclear targets, a downstream electromagnetic
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Figure 54: Nuclear correction factor R for the average F2 structure function in νA and `±A scattering
for a) Q2 = 5 and b) 20.0 GeV 2 compared to the measured NuTeV average F2 points shown with
statistical errors. The blue curve shows the result of the nCTEQ analysis of ν A (Fe and Pb) differential
cross sections, plotted in terms of the average F Fe

2 divided by the results obtained with the reference
fit (free-proton) PDFs. The green curve is the PRELIMINARY deFlorian et al fit to the NuTeV
average structure functions. For comparison, the nCTEQ fit, the EPS09 fit and the HKN07 fit to the
charged-lepton data are also shown, to emphasize the difference in the shadowing region

and hadron calorimeter, and a surrounding electromagnetic and hadron calorimeter.

The central fully-active detector serves as both the primary target and the tracking detector. The
downstream electromagnetic calorimeter consists of alternating planes of Pb and scintillator planes,
while the hadron calorimeter is similar, with planes of steel instead of Pb. The side electromagnetic
calorimeter consists of Pb plates between tracking plane in the outer region of the central detector. The
side hadron calorimeter consists of planes of steel with scintillator strips embedded.

Upstream of the central detector are planes of passive targets, with two planes 2.5 cm thick of mixed
Fe/Pb, one plane with 2.5 cm thick Fe/Pb and 7.5 cm C, a solid plane of Pb 0.80 cm thick, and a mixed
plane of Fe/Pb 1.30 cm thick. The mixed Fe/Pb planes are split with part of the plane being iron
and part of the plane being lead, such that the total mass is approximately equal. Tracking planes
are placed between each plane of passive targets. Recently a 15 cm water target has been installed
downstream of the Fe/Pb/C target and a tank of liquid 4He about 1 m in diameter has been installed
upstream of the main detector. Figure 56 shows a schematic of the solid nuclear target region along
with the placement of carbon, lead, and iron in the various targets.

Charged current events originating in the central detector are fully contained, except for the muon,
for neutrino energies of less than about 10 GeV. The MINOS near detector, directly downstream of
MINERνA, acts as a muon spectrometer and gives both muon energy and charge for forward going
muons. For particles stopping in MINERνA, particle identification can be determined from the dE/dX,
but there is no charge determination.

The NuMI beam is currently being converted to the Medium Energy (ME) configuration for the
NOvA experiment. Figure 57 displays the expected produced (no corrections for acceptance or recon-
struction) statistics in the fiducial volume of the fully-active scintillator tracker for 6 x 1020 protons on
target. The units of the z-axis are 1k events and this represents the statistics we can expect per 1 year
of running, when the Medium Energy beam configuration is running at expected power. The statistics
in the Fe and Pb targets will be about 1/3 the statistics displayed in Figure 57.

Since MINERνA plans to be running for many years in the ME configuration with NOvA, it will be
able to determine the nuclear dependence of the inclusive cross section, and in particular the relative
ratio of cross sections off lead, iron, water and carbon to a statistical precision of better than 1%.
MINERvA has also proposed to fill the present He cryogenic target with deuterium providing a direct
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Figure 55: Schematic side view of the MINERνA detector.

Figure 56: Nuclear target region of the MINERνA detector.

ratio of A/D2. As can be seen, even with the ME beam, MINERνA will not be able to reach deep
into the shadowing region. However, several data points integrated over Q2 between x = 0.04 and 0.10
should be obtainable with reasonable statistics. This should be sufficient to determine the direction of
the ratio of nuclear to nucleon cross sections as it enters the shadowing region.

10 Conclusions: Experimental Evidence for Shadowing in Elec-

troweak Interactions

Shadowing with `±A scattering has been studied for decades and its experimental evidence is now
overwhelming and conclusive. The A-dependence of the shadowing phenomena over a wide range of
nuclei has been measured with both electron and muon beams, and has been fitted to various theoretical
models, as summarized in the theoretical part of this review.

What is new in lepton nucleus scattering is the introduction of statistically significant analyses of νA
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Figure 57: Contour of the x vs Q2 distribution of events produced (not corrected for acceptance or
reconstruction efficiencies) in the ME beam configuration. The z-axis units are 1000 events and are for
a 3-ton scintillator fiducial volume and 6 x 1020 protons on target.

scattering. The experimental evidence for shadowing in ν A scattering is a comparatively new study
and is therefore much less settled. In this review of experimental data the emphasis has thus been
placed on these new νA scattering results and two very different and distinct conclusions have been
reached among groups studying them. Whereas all three analyses - nCTEQ, EPS and dFS - agree with
both the shape and the magnitude of the shadowing exhibited by `±A scattering, there is disagreement
between the nCTEQ analysis and those of EPS and dFS when considering νA scattering.

The nCTEQ analysis suggests an apparent difference in ν-A and `±A shadowing behavior, which is
not seen by the analyses of EPS and dFS. However EPS and dFS did not use the full NuTeV covariant
error matrix, yielding the full discriminatory power of the NuTeV data in their analyses, while nCTEQ
did use the full covariant error matrix.

It is important to again emphasize that any significant conclusions on shadowing with ν and ν
nucleus scattering that we are able to draw here are based on ONE analysis of ONE experiment using
ONE nucleus, the NuTeV ν Fe scattering data. The other current data set used in these analyses,
CHORUS ν Pb scattering, has significantly larger systematic errors than NuTeV and thus plays a much
reduced role in the analysis. Before any far-reaching conclusions can be drawn, it is important to gather
significantly more data from other experiments, using other nuclei. It is expected that the MINERνA
experiment, soon to be taking data in the higher energy ME beam configuration at Fermilab, will
provide data to compare with the NuTeV results.

Should subsequent experimental results confirm the difference between charged-lepton and neutrino
scattering in the shadowing region at low-Q2, it is interesting to speculate on the possible cause of
the difference. A recent study of EMC, BCDMS and NMC data by a Hampton University - Jefferson
Laboratory collaboration [241] suggests that anti-shadowing in charged-lepton nucleus scattering may
be dominated by the longitudinal structure function FL. As a by-product of this study, their figures
hint that shadowing in the data of EMC, BCDMS and NMC µ A scattering was being led by the
transverse cross section with the longitudinal component crossing over into the shadowing region at
lower x compared to the transverse. This is consistent with the expectations expressed in the equations
and figures of 3.2.3.

In the low-Q2 region, the neutrino cross section is dominated by the longitudinal structure function
FL via axial-current interactions, since FT vanishes as Q2 as Q2 ⇒ 0, similar to the behavior of charged
lepton scattering. If the results of the NuTeV analysis are verified, one contribution to the different
behavior of shadowing at low-Q2 demonstrated by ν A and ` A, in addition to the different hadronic
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fluctuations in the two interactions, could be due to the different mix of longitudinal and transverse
contributions to the cross section of the two processes in this kinematic region.

Another interesting hypothesis to explain this possible difference was recently proposed by V.
Guzey [242]. He suggests that at low-x and low-Q2 the value of y is close to unity and the neutrino
interactions primarily probe the down and strange quarks. This is very different from the situation with
charged-lepton scattering, where the contribution from down and strange quarks are suppressed by a
factor of 1/4 compared to the up and charm. If the strange quark is not subject to the same degree of
shadowing as the valence quarks, then the neutrino cross section in this kinematic regime would also not
exhibit strong shadowing. On the other hand, the charged-lepton cross section, with its comparatively
small strange quark content in this same kinematic regime, would still exhibit strong shadowing.
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[117] T. Schäfer and E.V. Shuryak,Rev. Mod. Phys. 70 (1998) 323.

[118] E. Shuryak and I. Zahed,Phys. Rev. D69 (2004) 014011.

[119] J. Hufner,Y. .P. Ivanov,B. Z. Kopeliovich,A. V. Tarasov, Phys. Rev. D62 (2000) 094022; ibid
C66 (2002) 024903.

[120] B. Z. Kopeliovich,A. V. Tarasov, Nucl. Phys. A710 (2002) 180.

[121] V. Barone and M. Genovese,hep-ph/9610206.

[122] H. Fritzsch and P. Minkowski,Phys. Lett. 73B (1978) 80.

[123] G. Altarelli,G. Parisi,and R. Petronzio, Phys. Lett. 76B (1978) 351.

[124] G. Altarelli,G. Parisi,and R. Petronzio, Phys. Lett. 76B (1978) 356.

[125] P. L. McGaughey,J. M. Moss,and J. C. Peng, Ann. Rev. Nucl. Part. Sci. 49 (1999) 217.

[126] G. Altarelli,R. K. Ellis,M. Greco,and G. Martinelli, Nucl. Phys. B246 (1984) 12.

[127] J. C. Collins,D. E. Soper,and G. Sterman, Nucl. Phys. B250 (1985) 199.

[128] P. Chiappetta and H. J. Pirner, Nucl. Phys. B291 (1987) 765.

[129] B. Z. Kopeliovich, proc. of the workshop Hirschegg ’95: Dynamical Properties of Hadrons in
Nuclear Matter,Hirschegg January 16-21,1995,ed. by H. Feldmeyer and W. Nörenberg, Darm-
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